We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
  • TOPICS
    • Design
    • Manufacturing
    • Applications
    • Components
    • Industry
    • MRO
  • MAGAZINE
    • Current Issue
    • Departments
    • Archives
    • Subscribe
    • Advertise
  • NEWSLETTER
  • VIDEO
    • Power Transmission Engineering TV
  • BLOGS
    • Revolutions
    • Editors Choice
    • Motor Matters with George Holling
    • Bearings with Norm
  • BUYER'S GUIDE
  • NEWS and EVENTS
    • Product News
    • Industry News
    • Events
  • Advertising
    • Brand Awareness
      • Print: Display Advertising
      • Print: Engineering Showcase
      • Online: Web Banners & Keyword Banners
      • Online: Sponsored Content (Native Advertising)
      • E-mail: Custom, White Papers & Webinars
      • Email: Sponsored Content (Native Advertising)
    • Response & Lead Generation
      • E-Mail: Sponsored Content (Native Advertising)
      • E-mail: Newsletters
      • E-mail: Custom, White Papers & Webinars
      • Online: Buyers Guide
      • Online: Sponsored Content (Native Advertising)
    • Print
      • Print: Display Advertising
      • Print: Engineering Showcase
      • Print: IMTS/Hannover Messe USA Showstoppers (September 2022)
      • Print: Buyers Guide
      • Print: Engineering sMart
      • Print: Specifications
    • Online
      • Online: Web Banners and Keyword Banners
      • Online: Buyers Guide
      • Online: Sponsored Content (Native Advertising)
      • Online: Specifications
    • E-Mail
      • E-mail: Newsletters
      • E-mail: Custom, White Papers & Webinars
      • E-mail: Sponsored Content (Native Advertising)
      • E-mail: Specifications
    • Special Promotions
      • Print: Engineering Showcase
      • Print: Showstoppers(IMTS/Hannover Messe USA)
      • Print: Buyers Guide
      • Print: Engineering sMart
  • Contact Us
  • AGMA
    • Membership
    • Events
    • Education
    • Emerging Technology
    • AGMA Media
      • Gear Technology
      • Gear Technology India
    • Standards
Subscribe
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Home » Blogs » Editors Choice » Motor Sizing for Unusual Loads

Editors Choice
Editors Choice RSS FeedRSS

Design / Components / Calculation / Load / Power / Specification / Torque / Controls / Motors

Motor Sizing for Unusual Loads

January 23, 2020
No Comments
One of the fun parts of the motion industry is involvement in popular movies! Motor specifications can be a bit rough: “I need to spin a 120-pound actor (and chair) 180 degrees in one-half second. He will be sitting up-right. This was the requirements for rotation portion of the half human, half CGI android bartender in Passengers.

So how do you go about calculating what is needed? My daughter had laughed that her physics professor used to say – oh, you need to model a cow, a sphere should be close enough for most applications. Sometimes you can get a bit closer. I decided that a 120 lb. cylinder about 14 inches in diameter would be a reasonable first order approximation. And of course, I automatically went to metric for the calculations! So mass is 54.4 kg, Diameter is .356 meters, inertia calculates to .86 kg-m^2 (1/2 m*r^2).

Now, for a .5 second motion with smooth transitions, you'll be splitting the motion into ramping time and slew time. A normal starting point is 1/3 accelerating, 1/3 slewing, 1/3 deceleration. The average slewing rate can be calculated as distance/(total time – ramp time) = ½ revolution / (.5 - .1667) seconds. Radians are more useful here, so ½ revolution is pi radians. Peak velocity is distance divided by the “average time” which is total time minus one ramp time. Peak rotational velocity = pi radians/ .333 sec = 3 pi radians / sec = 9.425 rad/sec.

Now we need the acceleration. Assuming a trapezoidal shape, this is peak velocity / ramp time: Rotational Acceleration = maximum rotational velocity / ramp time = 9.425/0.1667) = 56.54 rad/sec^2

Peak power will be torque * angular velocity = Acceleration * inertia * peak velocity = 56.54 * .859 * 9.425 (Nm * rad/sec) = 458W   (Note that 1Nm * 1 radian/sec = 1 W)

Looking at our range of motors, the 34HC-2 can provide that power level with some to spare at about 700 rpm. The nearest a pully ratio was 8:1 which moves the peak speed to 716 rpm.

Checking the inertia levels, the motor inertia is 2.7e-4 kg-m^2. This appears to the load to be 64 times larger due to the 8:1 pulley ratio, corresponding to 1.73 e-2 kg-m^2. This is a factor of ~ 50 less than the “load”. 50:1 is normally fairly easily tuned by our control system.

The chair was assembled, with the belt drive, big pulley on the chair, and a person wearing a back brace so they would not be thrown if they got off balance. Testing showed they were able to get the motion down to about 300 ms, so we had some margin. The final motions were smoothed and coordinated together for the shoot using a CANopen stage controller. The actual motion was closer to the original .5 second. We were told that the director liked the deep sound of the servo motor – it was a “new” sound for an android of the future – and so they recorded it separately and combined it back into the final soundtrack!

A behind the scenes look at Passengers:

https://www.youtube.com/watch?v=eUevWgyQ0kQ&vl=en

www.quicksilvercontrols.com

 

 

Post a comment to this article

Report Abusive Comment

Free Power Transmission Engineering Subscriptions
Subscribe
Free Power Transmission Engineering Subscriptions
Subscribe
FEATURED VIDEO
  • Regal Rexnord Motor Minute: Why Do Direct Drive Motor Shafts Have a Flat Side?
March 21, 2022
RECOMMENDED
  • Rapid Advancement at Automate 2022

    April 12, 2022
    Depositphotos_204041702_XL.jpg
  • Breaking the 4th Industrial Wall

    April 12, 2022
    Depositphotos_56883369_XL.jpg
  • An Underground Conversion in Mining

    March 10, 2022
    Sulzer1.jpg
  • LogiMat 2022 Offers Motion Control and Robotic Technologies

    April 18, 2022
    Logi1.jpg
  • The Flexibility Factor

    April 12, 2022
    Huco2.jpg
  • LogiMat 2022 Offers Motion Control and Robotic Technologies

    April 18, 2022
    Logi1.jpg
  • The Flexibility Factor

    April 12, 2022
    Huco2.jpg
  • Rapid Advancement at Automate 2022

    April 12, 2022
    Depositphotos_204041702_XL.jpg
  • Subscribe
  • Advertise
  • Contribute
  • Gear Technology
Powered byAGMA
Copyright © 2022 Power Transmission Engineering
  • Privacy Policy
  • Contact