load distribution

Articles About load distribution


Articles are sorted by RELEVANCE. Sort by Date.

1 Determination of Load Distributions on Double Helical-Geared Planetary Gearboxes (June 2017)

Standardized calculation methods such as ISO 6336 and DIN 3990 already exist to determine the load distributions on gears inside a planetary gearbox, but by their very universal nature, these methods offer varying results depending on the gearbox design. Double helical gears, in particular, can benefit from more specific, complex algorithms to reach a maximum level of efficiency. Double helical gears interact with the rest of the gearbox differently than helical or spur gears, and thus benefit from different analytical models outside the standardized methods. The present research project describes the algorithm to determine the load distribution of planetary gearboxes with double helical gears.

2 Influence of Gear Loads on Spline Couplings (February 2014)

Involute splines are commonly used in gearboxes to connect gears and shafts, especially when high torque is transmitted through the coupling. The load is shared among multiple teeth around the coupling circumference, resulting in higher load capacity than a conventional single key. However, the total load is not equally shared among all spline teeth, mainly because of pitch deviations resulting from the manufacturing process. The load distribution along the spline engagement length is also nonuniform because of tooth misalignments and shaft torsional effects. This paper presents an investigation of the influence of spur gear loads on the load distribution of spline teeth.

3 Meet Norm Parker - Bearings Blogger (April 2017)

In case you missed them, following are three recent blog postings by our popular PTE bearings blogger - Norm Parker. We also felt that, should you not be a blog follower, this would be a good way to introduce you to Norm's bearings wisdom. Parker is currently the global senior specialist/roller bearings at Fiat Chrysler Automobiles (FCA).

4 Industry News (October 2015)

News From the gear Industry

5 Load Ratings & Bearing Life (March 2016)

Power Transmission Engineering is collaborating with the Bearing Specialists Association (BSA) on a special section within the magazine. Bearing Briefs will present updated reports on bearing topics for each issue in 2016. Complimentary access to all BSA Bearing and Industry Briefs is available on the BSA website at www.bsahome.org/tools.

6 Fluid Couplings vs VFDs for High Inertia Rotating Driven Loads (September 2017)

As the old adage goes, "There is more than one way to skin a cat." In the early stages of any project, system designers are faced with choices; whether they are designing a new application or retrofitting an old one, they need to determine what is the most efficient, economical and practical way of completing the task at hand. Though there are usually at least two viable means to accomplish the task, the first step is always to review and weigh the merits of each option.

7 Load Capacity and Efficiency of Grease-Lubricated Worm Gears (September 2014)

Varying installation requirements for worm gears, as, for example, when used in modular gear systems, can necessitate grease lubrication - especially when adequate sealing for oil lubrication would be too complex. Such worm gears are being increasingly used in outside applications such as solar power plants and slew drives. While knowledge about the operating conditions is often appropriate, the basic understanding for load capacity and efficiency under grease lubrication is quite poor. Investigations done at FZG and sponsored by FVA/AiF are shown here to give an impression of the basic factors of load capacity and efficiency. The results of the investigation indicate a satisfying quality of calculations on heat, load capacity and efficiency based on characteristic parameters of the base oil with only slight modifications to the methodology known from DIN 3996 or ISO TR 14521.

8 Power Loss and Axial Load Carrying Capacity of Radial Cylindrical Roller Bearings (June 2013)

This paper is intended to enlarge the application range of radial cylindrical roller bearings by means of a more precise determination of thrust load capacity and more cost-effective design.

9 When a Good Gear Drive System Goes Bad (October 2012)

Even when the critical components of industrial power transmission gear drive systems are properly designed, specified and manufactured consistent with application requirements, performance problems can develop over time and failure may follow.

10 Dude - Where's My Preload (August 2014)

Many of us have been there; the bearings had the correct preload. You know it, you were there, and you personally saw the measurements. Now, the testing is done and the preload is gone. Not a little gone, not sort of gone - gone, gone. Finger pointing ensues. Suppliers are dragged in by their wrinkly Polo collars. You know the drill. Losing preload in a tapered roller bearing (TRB) system over the life of your application can be a troublesome problem, particularly for gear sets that are prone to noise or severe applications that rely on a very rigid and stable system.

11 Evolution of Worm Gear Standards and their Consequences on Load Capacity Calculation Approach (September 2014)

Beginning with a brief summary and update of the latest advances in the calculation methods for worm gears, the author then presents the detailed approach to worm gear geometry found in the revised ISO TR 10828. With that information, and by presenting examples, these new methods are explained, as are their possibilities for addressing the geometrical particularities of worm gears and their impact upon the behavior and load capacity of a gearset under working conditions based on ISO TR 14521 — Methods B and C. The author also highlights the new possibilities offered on that basis for the further evolution of load capacity calculation of a worm gearset based on load and contact pressure distribution.

12 Desktop Engineering - How to Calculate Dynamic and Static Load Ratings (February 2015)

When comparing bearing suppliers, engineers are often left with few options other than to compare dynamic load ratings and corresponding life calculations. Of course, we can look at steel and manufacturing quality; but if we are comparing sources of similar quality, those items may not provide a large contrast. It often surprises people to learn that bearing capacities are calculated values, not tested values. Lately, however, a trend is emerging for bearing suppliers to increase their ratings for higher performance bearings that have premium features such as higher quality steel and specilaized heat treatment. Bearing companies are under intense competitive pressure to make every feature add to the dynamic capacity of their bearings because it is very well understood that an increase in capacity adds to the bottom line.

News Items About load distribution

1 New KISSsoft Feature Considers Compliance and Influence on Load Distribution in the Gearbox (November 4, 2015)
In the static system analysis, a new feature considers housing compliance and influence on load distribution in the gearbox as well as lo...