# geometry

## Articles About geometry

Articles are sorted by RELEVANCE. Sort by Date.

This paper provides a mathematical framework and its implementation for calculating the tooth geometry of arbitrary gear types, based on the basic law of gear kinematics. The rack or gear geometry can be generated in two different ways: by calculating the conjugate geometry and the line of contact of a gear to the given geometric shape of a known geometry (e.g., a cutting hob), or by prescribing the surface of action of two gears in contact and calculating the correspondent flank shapes.

Tooth contact analysis (TCA) is an important tool directed to the determination of contact patterns, contact paths, and transmission errors in gear drives. In this work, a new general approach that is applicable to any kind of gear geometry is proposed.

Circular pitch gives me the size of the teeth in my mind, but diametral pitch does not. What is the purpose of the diametral pitch concept? Does it merely avoid pi in calculation?

In the history of machine tools, spindles have been very good relative to other bearings and structures on the machine. So quality professionals have developed a cache of toolsâ”-ball bars, grid encoders displacement lasers, etc.â”-to help them characterize and understand the geometry of the structural loop. But as machine tools have improved in their capability and precision, and the demands of part-geometry and surface finish have become more critical, errors in spindles have become a larger percentage of the total error.

Dovetails, gears and splines have been widely used in aero engines where fretting is an important failure mode due to loading variation and vibration during extended service. Failure caused by fretting fatigue becomes a prominent issue when service time continues beyond 4,000 hours. In some cases, microslip at the edge of a contact zone can reduce the life by as much as 40â“60 percent.

The main function of rolling bearings is to support load and transmit rotational movement with minimum energy loss. In order to achieve this, bearings are manufactured with particularly good quality fatigue resistance materials, proper design and tight manufacturing tolerances. Particular emphasis is put in both the macro, and micro geometry of the working shapes and surfaces of the raceways. Rolling bearings come in many types and sizes as ball and roller bearings for radial and thrust loads.

The load carrying capacity of spur gears may be calculated by ISO 6336 using influence factors. The face load factor considers the impact of the non-uniform load distribution over the face width. Even if the gears had perfect geometry, the load would not distribute uniformly along the contact lines. The face load factor depends on deformations of all parts of the containing gearbox and mainly of the teeth, gears and shafts as well as on manufacturing and assembly deviations.

In a research project at the Vienna University of Technology, the KISSsoft design software was used to check a new drivetrain concept and the micro-geometry of the bevel gear stage for a UAV (unmanned aerial vehicle).

Beginning with a brief summary and update of the latest advances in the calculation methods for worm gears, the author then presents the detailed approach to worm gear geometry found in the revised ISO TR 10828. With that information, and by presenting examples, these new methods are explained, as are their possibilities for addressing the geometrical particularities of worm gears and their impact upon the behavior and load capacity of a gearset under working conditions based on ISO TR 14521 â” Methods B and C. The author also highlights the new possibilities offered on that basis for the further evolution of load capacity calculation of a worm gearset based on load and contact pressure distribution.

## News Items About geometry

1 SMT Offers Cylindrical Gear Microgeometry Webinar (January 29, 2020)
Join SMT for the company's first webinar of 2020. This webinar will look at Cylindrical Gear Microgeometry in MASTA, covering a range...