Wind Gearboxes

Articles About Wind Gearboxes


Articles are sorted by RELEVANCE. Sort by Date.

1 Premature Bearing Failures in Wind Gearboxes and White Etching Cracks (October 2014)

Wind turbine gearboxes are subjected to a wide variety of operating conditions, some of which may push the bearings beyond their limits. Damage may be done to the bearings, resulting in a specific premature failure mode known as white etching cracks (WEC), sometimes called brittle, short-life, early, abnormal or white structured flaking (WSF). Measures to make the bearings more robust in these operating conditions are discussed in this article.

2 Wind Turbine Field and Test Rig Testing as Part of the Design Process for Gearboxes (September 2014)

The growth of worldwide energy consumption and emerging industrial markets demands an increase of renewable energy shares. The price pressure coming from coal, oil, nuclear and natural gas energy - combined with enormous worldwide production capacities for components of wind turbines - make wind energy a highly competitive market. The testing and validation of gearboxes within the test rig and the turbine environment attract a strong focus to the needs of the industry. The following contribution sums up the typical process requirements and provides examples for successful system and component verifications based on field measurements.

3 How to Get the Most Realistic Efficiency Calculation for Gearboxes (April 2015)

In recent years the estimation of gearbox power loss is attracting more interest — especially in the wind turbine and automotive gearbox industry — but also in industrial gearboxes where heat dissipation is a consideration as well. As new transmissions concepts are being researched to meet both ecological and commercial demands, a quick and reliable estimation of overall efficiency becomes inevitable in designing the optimal gearbox.

4 Gear Lubrication: Long-Term Protection for Wind Turbines (April 2014)

The chemical and physical properties of gear oils may change, depending - more or less - upon their formulation and the environmental conditions under which they are used. This is why - after three years of use in a wind turbine - a gear oil was examined to determine if indeed changes were evident and if the protection of the gears and rolling bearings still met the same requirements as would be expected of fresh oil. Our findings revealed that the existing gear oil - as well as its ability to protect the gears and rolling bearings - had degraded very little compared to fresh oil.

5 FZG Gearboxes Lubricated with Different Formulations of Polyalphaolefin Wind Turbine Gear Oils (August 2016)

In order to analyze the different gear oils suitable for the lubrication of wind turbine gearboxes, five fully formulated ISO VG 320 gear oils were selected. In between the selected gear oils, four PAO base oils can be found: PAOR, PAOM, PAOC and PAOX. A mineral-based oil (MINR) was also included as reference.

6 Investigations of Bearing Failures Associated with White Etching Areas (WEAs) in Wind Turbine Gearboxes (March 2014)

A critical problem for wind turbine gearboxes is failure of rolling element bearings where axial cracks form on the inner rings. This article presents field experience from operating wind turbines that compares the performance of through-hardened and carburized materials. It reveals that through-hardened bearings develop WEA/WECs and fail with axial cracks, whereas carburized bearings do not. The field experience further shows that a carburized bearing with a core having low carbon content, high nickel content, greater compressive residual stresses, and a higher amount of retained austenite provides higher fracture resistance and makes carburized bearings more durable than through-hardened bearings in the wind turbine environment.

7 High-Capacity Bearings Carry the Load for Chinese Gearbox Manufacturer (December 2008)

Th e signing of a contract for more than 5,000 sets of SKF’s latest high-capacity cylindrical roller bearings (HCCRB) for wind turbines will impart added load-carrying capacity, more reliability and longer life to the Nanjing Gear Company’s (NGC) line of gearboxes for wind generation applications.

8 Gears and Gear Drives Product Focus (February 2013)

Our product focus includes the latest technology in gears and gear drives from the leading manufacturers.

9 Musical Gearboxes (October 2013)

Dave Soma, the mechanical supervisor at Leland Olds Station, a coal-fired power plant near Stanton, North Dakota, says he and his maintenance team care deeply about keeping the plant running and providing people electricity, especially in the dead of winter.

10 An Open-And-Shut Case: Greases for Gear Applications (September 2016)

For the lubrication of open gear drives used in different industrial applications such as cement and coal mills, rotary furnaces, or where the sealing conditions are difficult, semi-fluid greases are often used in preference to fluid oils. For girth gear applications the greases are used with a splash or spray lubrication system. The selection of such greases influences pitting lifetime and the load-carrying capacity of the gears, as well as wear behavior

11 Determination of Load Distributions on Double Helical-Geared Planetary Gearboxes (June 2017)

Standardized calculation methods such as ISO 6336 and DIN 3990 already exist to determine the load distributions on gears inside a planetary gearbox, but by their very universal nature, these methods offer varying results depending on the gearbox design. Double helical gears, in particular, can benefit from more specific, complex algorithms to reach a maximum level of efficiency. Double helical gears interact with the rest of the gearbox differently than helical or spur gears, and thus benefit from different analytical models outside the standardized methods. The present research project describes the algorithm to determine the load distribution of planetary gearboxes with double helical gears.

12 Up in the Air - Aerospace Gears (April 2013)

Volatile aerospace market keeps gear manufacturers guessing.

13 Gearbox Bearing Service Life: A Matter of Mastering Many Design Parameters (April 2012)

The availability of high-strength shaft materials, in combination with bearings with high carrying capacity, allows use of slimmer shafts. However, the modulus of elasticity remains the same, so seat design for bearings and gears must be given close attention.

14 Gear Design Effects on Performance of High-Speed Helical Geartrains as Used in Aerospace Drive Systems (March 2016)

The performance of high-speed helical geartrains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High-Speed Helical Geartrain Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double-helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160–250° F) and lubricating jet pressure (60–80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling-off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears.

15 Best Practices for Gearbox Assembly and Disassembly (March 2014)

In most applications, gearbox reliability is critical to the productivity of the overall plant operation. So it follows that when industry is looking at the best ways to increase efficiency, reduce downtime, and increase profitability, gearbox performance and reliability are key factors. Designing for repair, and writing effective repair procedures, can speed the service time, and provide a quality refurbishment. The best practices listed in this article are proven, effective methods used to install and remove bearings, seals, gears, couplings and shafts within a gearbox.

16 Theoretical and Experimental Study of the Frictional Losses of Radial Shaft Seals for Industrial Gearbox (June 2015)

The improvement of the energy efficiency of industrial gear motors and gearboxes is a common problem for many gear unit manufacturers and end-users. As is typical of other mechanical components, the radial lip seals used in such units generate friction and heat, thus contributing to energy losses of mechanical systems. There exist today simulation tools that are already helping improve the efficiency of mechanical systems — but accurate models for seal frictional losses need to be developed. In this paper SKF presents an engineering model for radial lip seal friction based on a physical approach.

17 Space Shuttle Rudder-Speed Brake Actuator (October 2015)

The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch.

18 The Modified Life Rating of Rolling Bearings: A Criterion for Gearbox Design and Reliability Optimization (March 2015)

Engineers typically learn that the bearing L10 life can be estimated using the so called “C/P method” — or the “basic rating life” of the bearing, a method rooted in the 1940s. Major developments have since led to the “modified rating life,” released in ISO 281:2007, which includes the aiso life modification factor. In this paper a succession of equations used for bearing life ratings are reviewed, and current bearing life rating practices are discussed in detail. It is shown that — despite the introduction more than 30 years ago of the adjustment factor of the basic rating life, and the standardization in 2007 of the aiso modification factor — use of these improved calculation methods are not practiced by all engineers. Indeed — many continue referring to the old model as a way of seeking compliance with existing, established practices.

19 Trends in Industrial Gear Oils (April 2013)

With today's smaller, hotter - and overloaded - machinery, specifying the correct lubricant is vital.

20 Two-stage Helical Bevel Gearing (February 2016)

Gearing is an essential component in conveyors. The material handling industry appears divided between those who favor high-end three-stage helical bevel gearboxes and those who rely on less expensive worm gearing. But there’s an often over-looked alternative, the two-stage helical bevel gearbox.

21 Effect of Assembly Errors in Back-to-Back Gear Efficiency Testing (December 2015)

As gear efficiency is improved in small steps, it is important to be able to distinguish actual improvements from scatter that can occur while testing. An FZG back-to-back gear test rig was used to investigate how the assembly and re-assembly of the same test setup affects the measurements. A spread in torque loss between one assembly and another of the same test setup were observed. Rig conditions also affected the spread in input torque. With knowledge of how the spread in torque loss varies due to assembly, test results could be distinguished between changes due to assembly and actual differences between tests.

22 Analyzing Wind Power (August 2016)

Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth’s surface, and rotation of the earth. Wind Turbines convert the kinetic energy in wind into mechanical power.

23 Run Like the Wind - Windpower Conference Heads to Chicago (April 2009)

Wind is the talk of the town. It has become especially relevant to the power transmission community where bearings, gears, couplings, motors and gearboxes are providing the equipment for this thriving alternative energy industry. It comes as no surprise that the Windpower 2009 Conference and Exhibition, arriving in Chicago from May 4–7, will be the largest gathering of wind energy professionals and technologies to date.

24 Michigan Eyes Investment at AWEA Small and Community Wind Conference (December 2009)

The first trade show dedicated specifically to small and community wind took place in Detroit, Michigan November 3–5. Denise Bode, American Wind Energy Association (AWEA) CEO, was pleased with the turnout for the event and the increasing potential for this segment of the wind energy market.

25 Rewind Seminar Jump Starts Motor, Generator Know-How (June 2008)

Calling on engineers and maintenance power plant personnel, industrial users of low- and medium-voltage motors and generators and motor repair shop staff...

26 Old Tricks for New Dogs (June 2008)

The latest developments for wind turbines from Voith Wind rely on proven technologies.

27 Capacity--And the Lack of It--Rules (February 2008)

U.S. wind turbine growth puts a new spin on bearing manufacture.

28 Considerations for Gearmaking in Wind Turbine Applications (June 2010)

A Q&A with N.K. Chinnusamy, president of Excel Gear of Roscoe, IL.

29 Coastal Question Marks (October 2010)

Does the U.S. renewable energy solution lie offshore? An update on the status of offshore wind projects.

30 Modular Control Systems for Wind Energy (August 2016)

For a 5-megawatt wind turbine prototype, aerodyn employs the latest control and software technologies, including a comprehensive PC-based control solution and the new modular TwinCAT Wind Framework. The TwinCAT Wind Framework features the latest software engineering and Big Data applications to extend current Industry 4.0 concepts to the wind energy industry. The modular software supports, for example, the direct provision of sensor data to the operator’s database, and in general enables the easy adaption of the wind turbine operation management to future requirements.

31 Doubling Down and Forging Ahead (April 2017)

After getting positive feedback on changes made to the show last year, AWEA Wind Power is doubling down and taking their ongoing transformation even further.

32 Baby Steps in Wind Energy (August 2015)

The Department of Energy estimates that 4 million megawatts of potential power—four times the amount all U.S. power plants combined currently produce—exists in offshore wind energy. Construction of America’s first offshore wind turbines began in July. The wind farm, which is being constructed off the coast of Block Island, RI, will consist of five turbines. Together, they will produce 30 MW.

33 Wind Pushing Future of Mechanical Components (April 2015)

After a sluggish 2013, annual installations of new wind turbines grew by 44% in 2014, according to the Global Wind Energy Council. And while much of that growth has been in Asia— particularly China, which now leads the world with 114 GW of installed capacity—the USA, Europe, and the rest of the world expect steady growth for the next couple of years as well (Fig. 1).

34 AWEA to Wind Supporters--Do Not Panic (December 2010)

Despite posting its slowest quarter since early 2007, AWEA remains optimistic that the wind industry can and will work successfully with the revolving doors in Washington.

35 U.S. Wind Power Blowing Hot as New Installations Flourish (October 2017)

A look at recent installations, plus interviews with some wind industry insiders.