COUPLING PIE
WHO GOT A PIECE IN 2014
A COMPLETE RUNDOWN OF THE SMALL MOTOR RULE
IronHorse worm gearboxes are manufactured using only the highest quality materials and are designed to withstand the toughest international and U.S. testing standards. Our gearboxes interface with C-face motors and provide reliable speed reduction, increased torque and dual load capabilities wherever it is needed.

Cast Iron Gearboxes

Cast-iron gearboxes are available with right-hand and dual (both right and left) output shafts, and hollow-bore outputs.

Features
- Three output types: Dual Shaft, Right Hand Shaft and Hollow Shaft
- Four frame sizes: 1.75”, 2.06”, 2.37”, 2.62” models with parallel or right-angle gear shafts
- Six ratios: 5:1, 10:1, 15:1, 20:1, 40:1, 60:1
- One-piece cast iron gear box housing, 1045 carbon steel shaft
- Double-lipped embedded oil seals to prevent gearbox leakage
- Universally interchangeable compact design ensures easy OEM replacement
- One year warranty

NEW! Aluminum Gearboxes

Our new aluminum gearboxes are lightweight and durable, built with hardened steel worm shafts and hollow-bore outputs.

Features
- Five frame sizes: 30, 40, 50, 63, 75 mm
- Two ratios: 10:1 to 100:1 (in most sizes)
- Input faces: 56C, 145TC, 182/4TC reversible design
- Aluminum alloy housing for lightweight design
- Two bearings on input and output shafts
- Double-lipped embedded oil seals to prevent gearbox leakage
- Multiple mounting holes for all angle mounts
- One year warranty

Also Available

- Cast Iron Premium Efficiency Motors
- Rolled Steel General Purpose Motors
- Inverter-Duty AC Motors

Research, price, buy at: www.automationdirect.com/power-transmission
Ask The Expert
Norm Parker talks pre-tension thrust bearings.

Applications of Bevel Gears
A summary of the major applications for this high-tech gearing.

The Latest Design Technologies For Gear Devices with Great Transmission Ratios
Four types of gear devices with great ratio gears (GRGs) are discussed.

Finite Element Evaluation of Bearing Instrumentation Method
An evaluation of measurements taken on a 750kW turbine gearbox are tested by the NREL.
A little of this, some of that.

We love math.

Tom Johnstone, President and CEO, SKF Group.

Newest equipment, software, etc.

Houston, we have a problem.

SMMA Fall Tech. Conf. report.

Pack Expo, SMMA Conference

January 5-9 – SciTech 2015, Kissimmee, FL.
January 26-28 – 2015 AHR Expo, McCormick Place, Chicago, IL.
February 4-6 – SEMICON Korea 2015, COEX, Seoul, Korea.

Advertiser contact information.

Free subscriptions, anywhere in the world.

The Model T: One Mean “Machine”.
More torque. Less friction.

Optimize gearbox units with upgraded SKF Explorer bearings

A robust solution for harsh and demanding gearbox environments, upgraded SKF Explorer bearings enable a gear unit to transmit more torque, sustain higher external loads, or even be downsized to improve cost efficiency.

In addition, these bearings provide substantially lower friction than other bearings. In fact, the friction can be reduced by 30% compared to the competition, enabling the gearbox to run cooler and more efficiently.

With expertise in bearings, sealing, and lubrication solutions, SKF engineers can add value to the complete gear unit by enhancing reliability and performance, while improving the cost-effectiveness of the complete solution.

For more information, please visit skf.com or contact your local SKF representative.

Enhance gear unit reliability and improve performance
Upgraded SKF Explorer self-aligning bearings have enhanced wear and contamination resistance, and are better able to sustain external loads – up to 20% more load for a given life of a gear unit.

The Power of Knowledge Engineering
PTE Videos

Vibration Damping and Anti-Sloshing

Demonstrated at Pack Expo in November, Bosch Rexroth’s vibration damping technology addresses vibration reduction at the drive level, making it easier to implement on any master or controller. The unintended consequences of machinery vibration have negative effects on both your equipment and the products you manufacture. See an explanatory video at www.powertransmission.com.

Proper Bearing Handling and Storage

Motion Industries’ Tom Clark discusses proper bearing handling and storage in this Tom’s Toolbox MiHow2. Learn the requirements SKF uses to ensure the proper handling and storage and the ways they maintain those requirements. See the video online at www.powertransmission.com.

Flashback: Planetary Gears

This video, produced in 1953 by the U.S. Department of Defense, demonstrates the operating principles of planetary gear sets used in automotive transmissions. Includes a short review of the three planet carrier laws. See it at www.powertransmission.com.

More Videos Online

There are lots more videos online on a wide variety of mechanical power transmission and motion control topics. Visit www.powertransmission.com/videos/index.php to see them all.

Stay Connected with Social Media

Follow us on Twitter twitter.com/#!/PowerTransMag

Connect with us on LinkedIn www.linkedin.com/groups/Power-Transmission-Engineering-PTE-2950055

Subscribe Online www.powertransmission.com/subscribe.htm
High Quality Spiral Bevel Gears from Stock!

Arrow Gear Company is widely known as a leading producer of high precision custom made gears. But every day, thousands of manufacturers around the world rely on the precision offered by Arrow’s line of high capacity stock gears.

Arrow offers a wider range of stock precision spiral bevels than any other catalog - up to 16 inches in diameter - including ground tooth gears. Featuring carburized and hardened teeth, all gears are produced in matched sets for maximum capacity, and are available for immediate delivery. Modifications can also be performed to meet individual customer needs - a cost saving alternative to one of our custom designs.

With over 65 years experience, Arrow’s stock gears are manufactured with the same processes used for our custom aerospace products. With a state-of-the-art production facility and dedicated personnel who are among the best in the business, Arrow Gear offers the expertise and precision for the most demanding quality requirements.

When you need quality, expertise, and precision, you can rely on Arrow Gear!
Encouragement and Enthusiasm

In the Stott household, we love math.

Well, maybe not everyone in my household loves it equally, but since they were in kindergarten, whenever one of my children asked me for help with math homework, my reply has been an instant and cheerful “We love math!”

In fact, that ritual has occurred so often that the mantra of “we love math” has become ingrained. Ask any of my four kids what the family motto is, and they know the drill. They’ll respond with “We love math,” even if they do roll their eyes when they say it. The point is, my wife and I have tried to encourage in our children an enthusiasm for learning—not just for math, but also for science, foreign languages, music, literature and a wide variety of other subjects. Without that encouragement, the Stott family motto could easily have been “We love ice cream”—trust me on this one—but instead, it’s “We love math.”

So I was delighted when my eighth grade daughter, Emily, invited me to go with her to a STEM (science, technology, engineering and mathematics) event sponsored by our county’s regional office of education. The event was set up specifically for girls and their parents, and it was designed to encourage young women to pursue studies and careers in technical fields.

Since, you know — we love math — we just had to go.

It was a prestigious honor for my daughter. A maximum of three kids from each school were invited, and it took place at Argonne National Laboratory near Lemont, IL. More importantly, it was a great opportunity for her to hear from a number of women working in STEM fields about what they do on a day-to-day basis and how they got there.

The keynote speaker was Jillian Arnold, a cinematographer and workflow specialist. You might not think that cinematography has much to do with STEM careers, but that’s before you learn that Arnold shoots video for NASA’s Jet Propulsion Laboratory and that a “workflow specialist” is someone who handles and processes digital media between the time it’s shot in production to the time it’s edited in studio.

Her job involves computers, software and technical equipment, and she has to understand the technology of that equipment as well as the physics of lighting. Her talk was not only inspirational, but also put a face and a personality with the technology.

The event also included break-out sessions where the students were able to do some hands-on projects, such as building a table out of newspaper and masking tape, and constructing a miniature robot. They also heard from a panel of speakers including a computer simulation specialist from Argonne National Laboratory, a mechanical engineer specializing in nuclear power plants and a zookeeper from Brookfield Zoo.

For me, the most important part about this event was connecting the dots. Kids go to school, and they study math and science because they have to, but nobody explains how these often abstract concepts will ever relate to their real life. When will they ever have to solve for X or prove that two corresponding angles are equal? Shooting videos of rocket launches is a lot more interesting to kids than doing math problems. So is being a zookeeper. So is working in a nuclear power plant or programming one of the world’s most powerful supercomputers. There are a wide variety of STEM-related careers, but if kids aren’t exposed to them, they’ll never connect the dots, and they’ll see their schoolwork as drudgery.

If you’re reading this, you probably work in a STEM-related field—maybe even one of the really cool and interesting ones. You probably also know some young people who haven’t yet decided what they want to be when they grow up. I challenge you to share your enthusiasm and help them see the possibilities.

Maybe they’ll learn to love math, too.
Uncork Some Schaeffler Reliability with KUVE

Schaeffler’s innovative 4-row linear recirculating ball bearing and guideway system, KUVE is designed to keep your packaging machines moving by effectively vanquishing those dreaded causes of downtime: inadequate lubrication and contamination. Featuring our exclusive X-life™ technology, KUVE is synonymous with extra-long maintenance intervals and maximum productivity.

SUPERIOR LUBRICATION • OPTIMUM SEALING

With an integrated, patented lubrication channel in the carriage’s load zone that stores grease where it’s needed and an innovative one-way lubrication valve that ensures consistent grease flow, KUVE delivers longer lubrication intervals than any competitor’s bearings on the market. Meanwhile, advanced, low-friction seals offer optimum protection against contamination with minimal displacement resistance.

Choose KUVE and bottle up downtime, not your profits!

Need more details?
Please contact us at ads.ind@schaefler.com
www.schaefler.us

Superior-quality products.
Comprehensive reliable solutions.
At SKF, we believe in the long-term development of the U.S. industrial economy. The reindustrialization is supported by a strong university-based research network, a competitive workforce and energy supply from domestic energy resources. However, there are still challenges, particularly regarding the availability of skilled labor. Business, education and governments have a responsibility to work together to ensure this is not the bottleneck in U.S. industrial development. I am particularly pleased with and support the work the National Association of Manufacturers is doing in this area.

I also welcome the recent joint U.S.-China announcement on climate change, which states “technological innovation is essential... for new zero- and low-carbon technologies.” I think this will be a driver for upgrading or replacing older, less efficient plants and equipment, whether it’s for the latest generation of electric vehicles, jet engines or multi-megawatt wind turbines. There is a growing demand for highly efficient, highly reliable solutions, and SKF can play an important role in this development.

Over the last few years SKF has stepped up its investment in innovation and in our North American presence. We have been active in the United States since 1912, but during the last five years we have invested over $2.5 billion in North America in acquisitions, new facilities and upgrades. The single largest SKF Group investment to date has been the acquisition of U.S.-based Kaydon Corporation in 2013. This helped complete our bearing and sealing solution product portfolios, strengthening our offerings in industries from renewables, marine and medical, to oil and gas.

Kaydon also quickly expanded our manufacturing footprint in the U.S., adding 13 manufacturing facilities to our existing 33 U.S. plant locations.

Innovation is the lifeblood for a company like SKF, and we are continuing to step up our investments in this area. We have just broken ground on a new $30 million Global Technical Center - Americas, located near Chicago. It will focus on working closely with our customers to develop even more energy-efficient solutions, which will become part of our BeyondZero portfolio. This portfolio brings together many products and applications that deliver real energy savings for our customers. One good example in the United States is how we have worked closely with Spencer Pump on an aeration blower pump using our magnetic bearing system and permanent magnet motors to help significantly reduce energy used in waste water treatment.

The new U.S. technical center, scheduled to open by the end of next year, will focus on working closely with our customers to develop even more energy-efficient solutions, which will become part of our BeyondZero portfolio. This portfolio brings together many products and applications that deliver real energy savings for our customers. One good example in the United States is how we have worked closely with Spencer Pump on an aeration blower pump using our magnetic bearing system and permanent magnet motors to help significantly reduce energy used in waste water treatment.

The American Industrial Renaissance

Tom Johnstone, President and CEO, SKF Group

(From left): Poul Jeppesen, President and CEO of SKF USA Inc, A. George Pradel, Mayor of Naperville, IL, and Tom Johnstone, President and CEO of the SKF Group, break ground on the company’s new Global Technical Center – America. The groundbreaking took place in November, and the facility should be open by the end of 2015.

Artist’s rendering of the new SKF technical center being built near Chicago.
REVERSE ENGINEERING
BREAKDOWN SERVICES

IN-HOUSE STEEL MATERIAL WAREHOUSE
STRAIGHT BEVEL GEARS: 80" PD
SPIRAL BEVEL GEARS: 66" PD
FULL HEAT TREATING SERVICES
SPURS, HELICALS, SPLINE SHAFTS
GEARBOX REPAIR/REBUILDS
EDM WIRE BURNING

B&R
Machine and Gear Corporation

Toll Free: (800) 238-0651
inquiry@brgear.com • www.brgear.com
Extensively Applied to Photovoltaic Power Plants in Upington of South Africa and Lalackama of Chile

- 25-year manufacturing experience
- More than 70 patent products, 50% of our products are sold to all over the world
- Qualified supplier for Chinese army
- Both OEM and ODM available
- With R&D center and testing center (CNAS)

High efficiency and high torque slewing drive

- High torque-low speed slewing drive for uniaxial or biaxial photovoltaic trackers
- Using slewing bearing and double enveloping hourglass worm gear enables multi-tooth contact
- Mesh precision is up to 0°
- Main components are made of Al bronze and carburizing steel which features high transmission torque, stable operation, and facilitates supporting larger radial, axial load and high tilting moment simultaneously
- Aluminum bronze cage with the oil film guided wedge angle

“We believe that the United States will play an important role in the development of a new low-carbon economy and in the industrial ‘smart’ revolution, or the internet of things that now includes industrial devices.”

year, completes a global network of centers including new facilities in India, China, the Netherlands and Sweden. It is part of our strategy to more rapidly bring our technology even closer to where it’s most needed—to our customers. As part of this effort, the center will include something we call an SKF Solution Factory. It is part engineering center, part manufacturing center, and it helps apply and deliver technology solutions to meet the needs of its local customers. We opened our sixth in North America in Birmingham, AL in October and it was our 29th in the world.

In summary, I think we are in the early stages of an industrial renaissance in the United States. We believe that the United States will play an important role in the development of a new low-carbon economy and in the industrial “smart” revolution, or the internet of things that now includes industrial devices. We are embedding sensors in our components and linking them into intelligent systems that can reach new levels of energy efficiency, reliability and cost effectiveness. Today SKF is already a leader in stand-alone condition monitoring systems, and for tomorrow we see these self-powered, micro-sized sensors as key additions to bearings and related components in critical applications.

With our global technologies, combined with the local investments we have been making, I am confident SKF will play a key role in the development of sustainable solutions to secure profitable and responsible growth in this dynamic market.
Every detail matters. Consistency, precision and quality are key. Fortunately for you, that’s where First Gear excels.

Not just the ability to innovate. The ability to ensure each step is done correctly. Prototyping, hobbing, skiving, grinding, shaping, finish rolling, contract inspection, hob sharpening and more, we do it all.

And better yet. We do it all extremely well.

First Gear. YOUR MECHANICAL ADVANTAGE

7606 Freedom Way
Fort Wayne, Indiana 46818
Tel: (260) 490-3238
Maxon Motor

EXPANDS X DRIVES LINE

Two years ago, Maxon Motor introduced a new generation of brushed DC motors – the Maxon X drives.

Now, four more motor sizes are being added to the existing portfolio. The 14, 16, 22 and 26 millimeter diameter models are now each available in a long version (L), which offers higher continuous torque and higher continuous output power.

At the same time, Maxon Motor is introducing four new GPX planetary gearheads, in the sizes 14, 19, 26 and 37 millimeters, compatible with existing products in the program. These gearheads are designed with scaled gear stages. Each of the new three-stage gearheads can be driven with the next smaller motor. This results in the drive system being smaller, lighter and more economical.

The existing GPX 16 and GPX 32 models are available in various versions and can be equipped with ceramic axles to reduce wear. Customers looking for a particularly low-noise gearhead have the option of choosing plastic planetary gears.

Maxon also expanded its encoder portfolio. The new ENX 16 Easy absolute encoder is available as an SSI or BiSS-C version, according to the customer’s requirements.

For more information:
Maxon Motor
Phone: (508) 677-0520 ext. 113
www.maxonmotorusa.com

LM76

DEBUTS THREE NEW LINEAR ROLLER BLOCK AND RAIL SYSTEMS

Low cost, Saibo SB-LGB linear roller block and rail systems are now available from LM76 in three sizes to meet load requirements up to 1,200 newtons (270 pounds).

These narrow profile linear motion systems feature low noise, smooth travel, high speed up to 10 meters per second, high acceleration up to 50 meters per second, low weight, high linear accuracy, sealed radial low friction bearings and low cost. Due to their narrow profile they are easy to install into new and existing applications.

Saibo SB-LGB linear roller block and rail systems have an adjustable preload system to control the required level of precision needed for most applications. The roller block has six drilled and tapped holes for mounting tooling, cameras, test equipment and more. They can be used in robotics, assembly, pick-and-place, sorting, packaging, manufacturing, sampling, laser cutting, wafer handling and other precision applications. The rail systems are protected from debris, dust, chips and contaminates by plastic end caps with spring loaded oil filled felt pads. The felt wiper pads also deliver lubrication to the guide and rollers. The wipers are easily re-lubricated through convenient oil ports in the end cap.

For more information:
LM76
Phone: (413) 525-4166
www.lm76.com

Redex

OFFERS INCREASED VERSATILITY WITH NEW GEARS

Versatility is the key issue for manufacturers of multi-axis milling machines and vertical turning lathes. The same machine must be able to perform various milling and lathing operations so that machining operations can be carried out with the highest accuracy (without part disassembly) and the highest productivity.

Until now, these constraints meant that manufacturers had to use drives that were generally complex and did not necessarily meet every technical requirement. Redex offers two complementary integrated drives for tables used on milling machines and vertical lathes. They allow designers to choose the right drive for each application and based on their priorities of speed, power, accuracy and rigidity.

Redex’s high-speed versions of its DRP, KRP and KRPX ranges complement the features of its MSR range of drives. They simplify the design of the mechanical transmission systems of both large rotary tables used on vertical lathes (over 2,000
The Holiday Season gives us an opportunity to pause in our busy schedules and reflect on the many blessings we’ve received throughout the year. We give thanks for our great customers, our skilled and dedicated family of employees, friends and family and the continued joy of working in the industry we love.

From all of us at Forest City Gear, we wish you a very Merry Christmas and may your 2015 be a joyous and prosperous one.
Suhner SOLVES NOISE ABSORPTION FOR POWER SEAT

Less noise, less vibrations, less distractions, more comfort; all this is required in today’s global automotive industry. The power seat manufacturers are demanding innovation on the level of the component manufacturer.

Using patented innovations in conjunction with state-of-the-art manufacturing technologies, Suhner addresses these needs.

Through scientific experiments in Suhner’s R&D laboratory as well as through a well-respected university in the United States, Suhner has found the ideal combination of materials together with the best manufacturing techniques.

Suhner’s research found that the main noise source is the drive motor and its load, so the mission was to dampen these noise levels with the components that Suhner is manufacturing – the flexible drive shaft that is rotating inside a plastic casing. The combination of materials used together with how they are manufactured is the secret to the lowest noise levels for the entire power seat system.

For more information:
Suhner Manufacturing, Inc.
Phone: (706) 235-8046
www.suhner.com

Siemens UPGRADES SIMATIC 427D MICROBOX IPC WITH THIRD GENERATION INTEL PROCESSOR

Siemens Simatic 427D Microbox IPC has been upgraded with the third generation Intel Core i7 (1.7 GHz) processor for high system performance in demanding industrial applications. A turbo-boost feature delivers up to 2.4 GHz for maximum computing and control performance.

The IPC’s DDR3 memory technology offers up to 8-GB RAM. The expandable mass memory is configurable with Fast Cards up to 16 GB, SSD (Solid State Drive) with 50 GB (high endurance) or 80 GB (standard) for robust requirements or a 2.5" hard disk with 250 GB. Memory options include a 250 GB hard disk, a DVD drive and a non-volatile memory of up to 512 KB for non-battery applications.

The fanless IPC operates in temperatures up to 55 degrees Celsius. Highly reliable where vibration and shock loads are present, it safeguards against voltage failure with NVRAM for WINAC RTX (soft PLC). It also offers a retentive signaling buffer for WinCC and image security with an enhanced write filter function.

The rugged housing has good chemical resistance against oil and grease with a smooth front to resist dirt build-up.

Downtime is also reduced and fault recognition enhanced with a self-diagnostic feature.

The unit offers up to two PCIe expansion slots. Four USB 3.0 interfaces located on the back of the IPC and one USB 2.0 interface in front quickly
ATC Diversified Electronics
INTRODUCES LATEST SUMP PUMP MOTOR

ATC Diversified Electronics, a division of Marsh Bellofram Corporation, has introduced the Model SPM 120AAA single-channel shaft seal monitoring module for submersible pump motor applications.

Model SPM 120AAA provides early warning of possible motor shaft seal leakages and failures. When used as part of an effective predictive maintenance strategy, the module can help reduce the risks of premature equipment failure and downtime over 10 million mechanical cycles and fifty thousand electrical operations. Offered with choices of both fixed and adjustable sensitivities, the Model SPM 120AAA detects a pump motor shaft seal leak by sensing the position of a resistive float switch or pair of conductive probes installed within the seal cavity. When the resistance drops below the sensitivity rating and a possible leak is detected, the output relay energizes and the LED illuminates to red. When the submersible pump seal fault condition is cleared, the output relay automatically resets. Units operate from a 120 VAC 50/60 Hz supply voltage.

The Model SPM 120AAA is ideal for OEM submersible pumps, potable or wastewater sump pumps, industrial or municipal pump monitoring, control package manufacturing and general industrial leak detection. Units are UL Recognized and include a 10-year comprehensive product warranty.

For more information:
ATC Diversified Electronics
Phone: (304) 387-1200
www.marshbellofram.com

Siemens Corporation
www.siemens.com

Providing Innovation for a Greener Tomorrow

Flexible speed solutions made easy!
Lafert’s High Performance Permanent Magnet Motors are now in stock. Also available, are one of the most comprehensive and versatile lines of IEC motors and speed reducers. With over 60 years of proven performance, Lafert’s power transmission products will let you push through even the most demanding applications.

LAFERT NORTH AMERICA

Toll Free: 1.800.661.6413
Fax: 1.905.629.2852
www.lafertna.com
sales@lafertna.com

Copyright Lafert North America 2014. All rights reserved.
MotiCont

INTRODUCES HIGH SPEED, ZERO COGGING DDLMS

MotiCont, a manufacturer of motion control products, has introduced a new line of direct-drive linear motors (DDLMs).

MotiCont’s DDLMs eliminate backlash and provide an economical solution for users requiring high acceleration, high speed, and long life. They are available in three off-the-shelf models.

The compact DDLM-019-044-01 linear motor is only 0.75 inches in diameter and 1.75 inches long. It has a stroke of 0.46 inches and features 11 ounces of continuous force and a 34.8 ounce peak. The compact, longer stroke DDLM-019-070-01 linear motor is also only 0.75 inches in diameter but is 2.75 inches long. It has a stroke of 0.96 inches and features 10.1 ounces of continuous force and a 32.1 ounce peak. For higher force applications the DDLM-038-051-01 linear motor is 1.5 inches in diameter and 2 inches long. It has a stroke of 0.375 inches with a continuous force of 3.1 pounds and a 9.9 pound peak.

These compact motors can be integrated into new and existing applications using threaded features on the front and rear faces of the motor, as well as each end of the shaft. The feedback devices, amplifiers and controllers are also available.

Non-commutated, moving magnet motors have zero cogging and the light mass of the moving part allows for high acceleration/deceleration for higher throughput, and direct coupling to the load increases accuracy. All DDLM linear motors are also available with internal springs to retract the shaft to a home position in the event of a sudden shutdown.

Typical DDLM direct drive motor applications include: Automated assembly, component insertion, fluid dispensing, pick-and-place, robotics, wafer handling, sorting, valve and flow control, labeling, tension control, and laser machining in the processing, manufacturing, medical, inspection, metrology and other industries.

For more information:
MotiCont
Phone: (818) 785-1800
www.moticont.com

GAM

RELEASES LINEAR MOUNT PRODUCTS BROCHURE

GAM, a manufacturer of precision gear reducers, servo couplings and linear mounting kits, announced the release of its new linear mount products brochure on Nov. 11.

GAM’s linear mount products are a line of products designed to mount directly to actuators. This offering started with just a single item, the linear slide kit, after GAM noticed customers having difficulty mounting motors to actuators. Over the years, it has evolved into a complete range of gearboxes, couplings, and adapter kits. The product range expanded even further as GAM leveraged its manufacturing operations and engineering resources to integrate individual products into complete system solutions as a service to customers.

“We really wanted to highlight our flexibility and capabilities beyond what customers may have known about or have seen in previous catalogs,” said Craig Van den Avont, president of GAM. “This brochure really captures the essence of the level of value added service that we provide to our customer base.”

For more information:
GAM
Phone: (847) 649-2530
Fax: (847) 649-2501
www.gamweb.com
Helix Linear Technologies
UNVEILS MINIATURE LINEAR GUIDANCE PRODUCTS

This new family of linear guidance products from Helix offers precision, accuracy and flexibility, and consists of an embedded inverse hook design. It’s designed to tightly secure block components, which in turn helps them to better handle impact forces as they work to distribute stress over a larger area of the system.

Linear guidance systems offer accurate positioning, are often high speed and energy saving and can maintain accuracy for long periods of time in their respective applications.

Additional benefits of the Helix Miniature Linear Guides include:

Unique design: The miniature guides consist of a ball re-circulating design along with an embedded inverse hook design, which helps to reduce noise while at the same time extend life, reduce maintenance and improve high speed running capability.

Reinforced plates: The HMR-EE series stainless steel reinforced plates help to make this product line able to handle the operation of high running speeds.

Lubrication: Included in the design is an embedded lubrication pad, which works to oil balls and the raceway.

Greater surface contact: This feature allows the miniature guides to work with high load and high moment capacity when compared to competing products.

Dust-proof: Designed so that dust contamination is restricted, thereby enabling prolonged life.

For more information:
Helix Linear Technologies
Phone: (855) 435-4958
www.helixlinear.com

J.W. Winco
ANNOUNCES EN 450 BALL-SHAPED DOOR CATCHES

J.W. Winco, Inc., a supplier of standard industrial machine components, announced it now offers EN 450 ball-shaped door catches, in metric sizes.

These RoHS-compliant door catches were designed for use with both shutter doors and sliding doors. The ball-shaped door catch consists of a catch body to be fixed to a frame and a ball to be fixed to a door. The catch body is technopolymer plastic and matte black, and the ball is glass fiber reinforced plastic.

Under specific tests, the catch showed constant performances for more than 20,000 cycles.

Also available are EN 450.1 plastic spacers for ball-shaped door catches, made of glass fiber reinforced plastic. In addition to the basic spacing distances of 5, 10 and 15 millimeters, combinations of spacers can provide distances of 20, 25 and 30 millimeters as well.

J.W. Winco offers an extensive selection of inch and metric size adjustable levers, cabinet U-handles, plastic and steel hinges and locking mechanisms, revolving and retractable handles, hand wheels, hand cranks, tube connection and conveyor components, inch and metric construction tubing, shock absorption mounts, leveling mounts, hand knobs, spring, ball and indexing plungers, jig, fixture and fastening components, retaining magnet assemblies, toggle clamps, metric casters and wheels, universal joints, oil sight glasses, and metric tools for the industrial and commercial equipment industries.

For more information:
J.W. Winco, Inc.
Phone: 1 (800) 877-8351
www.jwwinco.com
He was out.

Nine years ago, Ross Rivard left the coupling industry for the shimmering new world of luxury automotive components at Lacks Enterprises, where he was immediately enveloped by platinum trim systems and chrome composite wheels. It was glitz and glam and as sparkly clean as the fresh-from-the-dealership cars his products were embellished onto.

But for a self-proclaimed “shop rat” like Rivard, it was all a smidge too hoity-toity and entirely too hollow.

“I like to see how things work and what they do and how they come together,” Rivard said. “The product [at Lacks] was shiny – but it didn’t do anything. So I was kind of out of my element. It’s a great company, really well run with wonderful products and they do very well in the marketplace. It just wasn’t my thing.”

So after nearly a decade removed from the industry, Rivard decided to return to his grime-covered roots earlier this year and get down and dirty with couplings once more. Turns out he couldn’t have picked a better time.

“The industrial sector by itself is doing very well,” Rivard said. “It continues to expand and the various sub-segments of the marketplace are doing very well, like energy and gas and oil. Others, like mining, are not doing as well. But overall it’s doing very well.

“It was absolutely a good time to return.”

Rivard, who became president of Ringfeder Power Transmission USA in Westwood, NJ back in April, moseys back into town as a prodigal son of sorts, both signifying and confirming the undeniable appeal of an industry that has enjoyed robust growth – most of all in 2014 – since his departure.

Fueling the Fire

Figuratively and literally speaking, oil and gas make most things in this world go – and in 2014 the coupling industry was of little exception.

Buoyed by an increased demand in fossil fuels over the past 12 months, the industry as a whole experienced one of its best calendar years in over a decade, according to Lovejoy (Downers Grove, IL) general manager Elliot Wilson.

“It was one of the best years [in a long time],” Wilson said. “Given the economic conditions we did not do a price increase this year, but we still saw significant growth. It was a very, very good year.”

While companies remained tight-lipped and opaquey vague about specific empirical data and exactly how good 2014 was, the general consensus was simple: pretty darn.

“My understanding is that there was a very big demand for oil and gas extraction equipment,” said Andy Lechner, sales manager of R+W America in Bensenville, IL. “There was kind of a boom over the last couple of years. It’s been especially interesting for R+W here in the U.S. because Houston tends to be the technological center for the world when it comes to fossil fuels and petroleum. So a lot of the engineering and capital equipment gets made – if not in Houston – then somehow Houston tends to be involved in some way.”

Of course, getting a piece of that sweet, oil and gas-soaked coupling pie wasn’t as simple for a smaller, niche company like R+W as, say, a market power such as Lovejoy. The problem is the monolithic bulkwork of carefully constructed guidelines and requirements imposed by the American Petroleum Institute (API) that date back to the 1940s.

In mid-2013 Lechner and R+W had the opportunity – and the foresight – to
We recently came across a two decades old photo of some young up and coming engineers that were part of our drive engineering team at the time. Guess what? All those people are still with us. In fact, they are among our company leaders today.

Imagine. Twenty years of experience from each of them going to work for you every day. Incredible knowledge. Penetrating insights. Real results.

Yaskawa puts all of that to work for you every day. Think of what you can do with a partner like that.
GETTING A PIECE OF THAT SWEET COUPLING PIE

Ringfeder Power Transmission USA employee Jaime Fiorilo tests couplings.

expand their coupling offering by introducing its Survivor line of disc pack couplings.

“The (API) specifies that a certain, heavy-duty metallic coupling be used in pump drives – and that’s a disc pack coupling,” Lechner said. “There was an opportunity for R+W to expand its reach in the oil and gas market, and that was through the API version of the disc pack coupling. Our [disc pack coupling] uses a pure-friction drive to transfer the power. So we decided we had an opportunity to bring a technical advantage to that field, while at the same time expanding our offering.

“Out of those disc pack couplings that R+W developed, one line called the LPA – which is especially intended for API610 pump systems – was made and marketed, and as we’ve gotten a little bit closer to the users of those couplings in the industry we’ve decided to work on a new series that incorporates some new features that we learned would be desirable for those engineers.

“We’re planning on rolling that product out in 2015.”

Like R+W, Michigan-based KTR Corporation decided to up its metaphorical ante in 2014 in order to fully tap into the thriving oil and gas marketplace.

“I think in general, and you’ll probably get the same response from everybody, is that [2014] was stronger than in years past,” said Chris Hatseras, KTR’s engineering and marketing manager. “Couplings service many different industries; you’re never in the same industry, so it’s just a mix of different markets coming back up – oil and gas being one of them.”

Though Hatseras said that most of the new products KTR released in the United States over the past year were not technically designed to “springboard” them off the swelling wave of oil and gas sales in 2014, the company did introduce the Rigiflex-HP - an API-approved coupling used on turbo compressors, high-speed pump drives, generator drives and turbine drives – overseas in late 2013 specifically to capitalize on the oil and gas boom that carried over into last year.

KTR also released the ROTEX line of couplings with T-PUR improved polyurethane material, as well as the BoWex GT line, in 2014.

“These [products] were more complementary,” Hatseras said of the T-PUR and BoWex GT. “In some years we will introduce something that’s new. For instance, in oil and gas we introduced the [Rigiflex-HP] this year, but not in the U.S. So that’s an example of saying, ‘Here’s a new product, here’s a bunch of new sales and we’re really going to go after it.’ Typically, we’re a little more conservative on how we innovate.”

That last sentiment, though subtle, is a telling one. Even a company priding itself on conservatism, like KTR, found reason to exert itself beyond its normal means in 2014 – an irrefutable sign that this past year was a grand one indeed, and also a grim revelation that perhaps 2015 won’t enjoy such fortuitousness.

“Oil and gas prices have gotten so low, how can there be a continuing need for this volume of capital equipment, like fuel pumps and so on?” Lechner asked rhetorically.

It’s a question that doesn’t have to be answered just yet, as most companies still seem to be riding high off the euphoric successes of 2014. Yet it’s out there, nonetheless – hovering ominously beyond the gilded sheen of cartoonish Scrooge McDuck money bags and vertical arrows exploding out the top of display charts.

“We think [the coupling industry] is going to be maybe not as strong in 2015 [as in 2014],” Hatseras said.

Reinventing the Wheel

One company that didn’t seem all that infatuated with the rampant rise of oil and gas, nor the (alleged) impending down year to come, was Lovejoy – a giant in the industry that seems to keep churning its massive legs no matter how flat or hilly the horizon.

“There were industries that were down, like in the coal industry, but we were encouraged by seeing growth in multiple areas. It wasn’t really limited to just oil and gas.

“One thing about our company, probably more so than a lot of multi-nationals, is we are U.S.-centric. When you look at the global economy, the U.S. is doing really well right now. Our flexible coupling and our jaw couplings, these are products that go into a tremendous amount of industries;
Baldor • Dodge® power transmission products offer reliable service and low maintenance to help reduce your total cost of ownership. Our innovative bearings, gearing and power transmission products have solved the toughest applications for over 130 years.

Our technical sales team can help you with the most challenging applications, and our worldwide distributor network ensures immediate delivery.

When it comes to PT solutions, Baldor • Dodge is the first name in power transmission.

baldor.com 479-646-4711

• Unmatched Quality
• Superior Reliability
• Improved Uptime
• Quick Delivery
• American Made Since 1880
they’re multiuse couplings that go into everything from devices at home to factories all over the country – and those products were up solidly for us.

“So we saw strength universally across the country.”

While several companies have recently come out with innovations specifically targeted towards hopping on the oil and gas bandwagon, Lovejoy – already firmly entrenched in the industry – spent 2014 stripping down the wagon itself and completely reinventing the wheel, so to speak.

“We took a two-year deep-dive into trying to reinvent the gear coupling,” Wilson said. “The gear coupling was created long, long before there was proper analysis and modern software. So we used countless optimization techniques and came up with the industry’s best gear coupling...

...the HercuFlex is what we’re calling it.”

It’s certainly an ambitious name for an ambitious product, and while it doesn’t exactly conjure up images of a chiseled Greek demigod lambasting serpentine monsters with a heavy wooden club, the stout, platinum coupling is still a fairly Herculean engineering feat, according to Wilson.

“This is a truly new product,” Wilson said. “This is a clean slate approach where we gave our design engineers a blank canvas and said, ‘look at everything out there and come up with what is absolutely the best gear coupling in the marketplace’.

According to Wilson, the HercuFlex offers “increased torque and bore capacity, combined with a robust design that increases service life.”

“There are a lot of people, and we’re the same way, where you do little spins or little tweaks and call it a new product or innovation,” Wilson said. “I can’t tell you the last time the coupling industry saw a clean-slate, newly optimized solution. I’ve been in the industry five years and I’m not sure I’ve seen it.”

Going Global … and Beyond

In a loopy, roundabout way, this brings us back to Rivard and Ringfeder, who didn’t revolutionize the world of couplings with any bold new products in 2014, but made one of the industry’s most audible splashes nonetheless.

For Ringfeder, a global enterprise with a reach expanding from America’s East Coast to the literal Far East of Ji-
Angsu Province, China, the big news over the past 12 months was the acquisition of Tschan, a German-based producer and developer of shaft-coupling technology.

“It expanded our product line, giving us a full-complement,” Rivard said. “That’s the exciting thing for us.

“We acquired it in June of 2014, and what it did was expand our capability in the elastomer couplings and slightly in the rigid disc couplings. It allowed us to penetrate new markets where we had previously played on the fringe.”

And while Ringfeder sets its sights on broadening its global position in 2015, R+W has slightly loftier goals – goals that expand past the constrictions of man’s earthly domain and up towards the heavens.

“Our company is actually branching off into a number of other areas, including torque limiters and couplings for aerospace equipment,” Lechner said. “We’re working on projects for NASA... and we’re in the process of pursuing a certificate called AS90120, which is an aerospace-quality certification that we’re hoping to have wrapped up here in the next six months.

“I wish [I could tell you more], but I’m afraid it’s top secret stuff.”

So there it is – as 2014’s lucrative year comes to an end and companies look ahead to days and months that are likely to be less fruitful due to falling oil and gas prices, among other depressions, there remains reason for great optimism.

Couplings in space? It doesn’t get any more fulfilling than that.

Yeah, Rivard was right. He came back at the perfect time.
The Small Motor Rule, How Will This Affect You?

New Federal Regulations Take Effect in March 2015

Chris Medinger

According to the Department of Energy (DOE), more than half of all electrical energy consumed in the U.S. is used by electric motors. To address this, several years ago, the DOE conducted a technical study as to what could be done to raise the efficiency levels of “small” motors. After years of study and litigation, the Small Motor Rule (SMR) was passed that covers two-digit NEMA frame single- and three-phase ¼ through 3 horsepower motors in open enclosures.

Facility managers are increasingly under pressure to reduce energy costs, increase productivity and reduce greenhouse gas emissions. To that end, this mandate is anticipated to have significant positive effects for products shipped from 2016–2045:

• Save approximately seven quads of energy (one quad is equivalent to the annual energy consumption of ten million U.S. households)
• Reduce $41.4 billion in energy costs
• Cut 395 million metric tons of carbon dioxide emissions
• Eliminate the need for approximately eight new 250-megawatt (MW) power plants (Ref. 1)

The purchase price for an average motor makes up approximately three percent of the total lifecycle cost to own and operate. Energy costs make up the rest (Ref. 2). Managing motors could pay big dividends in reducing energy costs and increasing process reliability.

But how will this mandate affect OEMs and end-users? Let’s examine the various aspects needed for complying with the new legislation taking effect March 9, 2015. Motors requiring outside agency approval, such as UL or CSA, have a two year extension and need to comply by March 9, 2017.

Motor Designs

One unique aspect about small electric motors is there are many design possibilities. Some motors’ designs employ magnets to assist with rotation and increase efficiency, while other designs, such as switch reluctance, are being improved with controls, making significant increases in efficiency. Older existing designs, such as shaded pole motors, may be phased out over time as they exhibit efficiencies much lower than new designs and products available. New motors require electronic control, increasing costs, but they have tremendous energy saving benefits (Ref. 3).

End users will not have to replace machinery currently in use, but if they want to replace a motor in an existing machine, they may have to call the OEM to supply them with a motor that meets the most current regulations.

OEMs considering replacement of shaded pole or capacitor type motors with these new emerging designs will need to re-engineer their products and validate their motors. OEMs will incur costs to redesign their products to accommodate larger, more efficient motors, or to purchase a stockpile of replacement motors of the correct size.

Who Is Affected?

Prior to this legislation, from an OEM designer’s point of view, motor choice focused primarily, in descending order, on price, size, noise-level, and weight. Until the Energy Independence and Security ACT (EISA) legislation, neither the OEMs nor their customers considered efficiency important enough to factor into a machine’s overall design. Now, rising energy costs and the new legislation are moving efficiency to the top of everyone’s checklist (Ref. 2).

Tables 1 and 2 show the new minimum efficiency standard levels, which apply to all small electric motors manufactured for sale in the United States, or imported into the U.S. either as standalone items or as a part of a system (Ref. 4).

<table>
<thead>
<tr>
<th>Motor Output Power</th>
<th>Six Poles</th>
<th>Four Poles</th>
<th>Two Poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 hp/0.18 kW</td>
<td>67.5</td>
<td>69.5</td>
<td>65.6</td>
</tr>
<tr>
<td>0.33 hp/0.25 kW</td>
<td>71.4</td>
<td>73.4</td>
<td>69.5</td>
</tr>
<tr>
<td>0.5 hp/0.37 kW</td>
<td>75.3</td>
<td>78.2</td>
<td>73.4</td>
</tr>
<tr>
<td>0.75 hp/0.55 kW</td>
<td>81.7</td>
<td>81.1</td>
<td>76.8</td>
</tr>
<tr>
<td>1 hp/0.75 kW</td>
<td>82.5</td>
<td>83.5</td>
<td>77.0</td>
</tr>
<tr>
<td>1.5 hp/1.1 kW</td>
<td>83.8</td>
<td>86.5</td>
<td>84.0</td>
</tr>
<tr>
<td>2 hp/1.5 kW</td>
<td>N/A</td>
<td>86.5</td>
<td>85.5</td>
</tr>
<tr>
<td>3 hp/2.2 kW</td>
<td>N/A</td>
<td>86.9</td>
<td>85.5</td>
</tr>
</tbody>
</table>

*Standard levels are expressed in terms of full-load efficiency

<table>
<thead>
<tr>
<th>Motor Output Power</th>
<th>Six Poles</th>
<th>Four Poles</th>
<th>Two Poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 hp/0.18 kW</td>
<td>62.2</td>
<td>68.5</td>
<td>66.6</td>
</tr>
<tr>
<td>0.33 hp/0.25 kW</td>
<td>66.6</td>
<td>72.4</td>
<td>70.5</td>
</tr>
<tr>
<td>0.5 hp/0.37 kW</td>
<td>76.2</td>
<td>76.2</td>
<td>72.4</td>
</tr>
<tr>
<td>0.75 hp/0.55 kW</td>
<td>80.2</td>
<td>81.8</td>
<td>76.2</td>
</tr>
<tr>
<td>1 hp/0.75 kW</td>
<td>81.1</td>
<td>82.6</td>
<td>80.4</td>
</tr>
<tr>
<td>1.5 hp/1.1 kW</td>
<td>N/A</td>
<td>83.8</td>
<td>81.5</td>
</tr>
<tr>
<td>2 hp/1.5 kW</td>
<td>N/A</td>
<td>84.5</td>
<td>82.9</td>
</tr>
<tr>
<td>3 hp/2.2 kW</td>
<td>N/A</td>
<td>N/A</td>
<td>84.1</td>
</tr>
</tbody>
</table>

*Standard levels are expressed in terms of full-load efficiency

“Now, rising energy costs and the new legislation are moving efficiency to the top of everyone’s checklist.”

www.powertransmission.com
The proposed rules cover capacitor design motors as described, which impact many different types of OEMs, such as appliance manufacturers, pool pumps, and residential and commercial HVAC equipment.

To comply with the new regulations, motor manufacturers will need to change original motor designs significantly. Since additional active materials, like copper and steel, will be needed in motor designs to increase efficiency, the overall cost of motors will likely increase. Additionally, manufacturers will face the tooling cost for each separate design at each incremental efficiency level. Besides these capital expenditures, manufacturers will incur equipment conversion expenses such as research and development, testing, and product literature development associated with the new energy conservation standards. The DOE admits that the rule “may require expenditures of $100 million or more on the private sector...” (Ref. 5).
The good news for end users at all levels is these regulations will result in reduced energy consumption. End users have no direct compliance requirements with the DOE like motor manufacturers and OEMs. They do not need to concern themselves with equipment design issues related to motor changes nor do they need to submit compliance paperwork to the DOE.

A Change in Topology
To meet these higher efficiency levels, many motors will change in topology. Based on meeting higher efficiency levels there may be potential impact on the mounting and alignment.

The Nuts and Bolts (SMR & EISA Expansion)
In May 2014, the DOE released communications with required expansions of three-phase, single-speed, low voltage, integral HP motors, 1-500 HP to meet NEMA Premium efficiency levels, excluding some exceptions. This ruling, which goes into effect on June 1, 2016, expands current motor regulation for motors that were not previously covered in the EISA 2010 regulations. These families of motors are also listed below.

For the SMR, the motors that are in scope include:
- 2-digit frame numbers - 42, 48 and 56 frame motors and their IEC equivalent frame size motors
- The Speed or Poles of the motors would include 2, 4 and 6 pole designs from 1/4 to 3 HP
- Open construction motors that are either 3 phase (Polyphase), Cap Start- Induction Run or Cap Start/ Cap Run designs
- Continuous duty rated and also meet NEMA Service Factor

Exemptions to this rule include:
- Definite or Special Purpose OPEN construction design motors
- Motor speeds that are outside of the 2, 4 and 6-pole speeds
- Enclosed motors
- Motor types that are not classified as being three-phase, cap start-induction run or cap start/cap run
- Intermittent duty motors as well as designs outside the HP and frame size listing as described above
- Motors that are already covered by other efficiency legislation are also not covered by this rule

The Energy Independence and Security Act (EISA) expansion and compliance rule, sometimes referred to as the EISA Expansion Rule, expands the following list of motor designs to meet NEMA Premium efficiency. 1 – 500 HP, NEMA Design A, B & C (1-200 HP only today for Design A & B motors); IEC Design N, H, 8 Pole designs, enclosed
56 Frame IHP (1 HP and larger) that are either of General Purpose, Special or Definite Purpose design electric motors.

The Efficiency levels must meet NEMA Premium levels as listed in Table 12-12 (IE3 – 60Hz).

Motors that are now affected by this Expansion Rule include:
- NEMA Design A & B motors from 201 to 500 HP
- NEMA Design C motors from 1 to 500 HP
- All voltages ≤ 600 volts
- 8-pole motors
- Electric motors with non-standard endshields, flanges or shafts
- Motors with moisture resistant windings, like encapsulated or sealed windings
- Motors that use any non-standard mounting like a base or cradle
- Motors that do not have a base or cradle – footless designs
- Partial designed electric motors - but not rotor and stator sets
- Vertical hollow shaft motors
- TENV designed motors
- JM and JP Pump motors
- Electric motors having thrust or roller bearings
- Integral brake motors
- Motors with separately cooled blowers on them
- Enclosed 56 frame 1HP and larger – 56 Open motors are covered by the SMR
- Gearmotors if the motor can be removed from the reducer and work as independent motor

Exempt Motors from the 2010 Expansion Rule include:
- Fire Pump motors
- Liquid cooled motors
- Submersible motors
- Air over design motors
- Component sets (stator, rotor sets)
- Small electric motors below 56 frame – See SMR Rules
- Advanced Motor Technology motors which include PMAC, ECM, Brushless DC, etc.
- Inverter Duty only motors

Conclusion
The electric motor is a critical component in many plant applications and in most equipment and is used in a wide range of equipment in almost every sector of the economy. Given this, the impact of this regulation will be significant for overall energy consumption in the United States. **PTE**

References

Chris Medinger is product marketing specialist with LEESON Electric and may be reached at (262) 387-5410 or chris.medinger@leeson.com. LEESON is a Regal brand located in Grafton, WI. Regal Beloit Corporation (NYSE:RBC) is a leading manufacturer of electric motors, mechanical and electrical motion controls and power generation products serving markets throughout the world. Regal is headquartered in Beloit, Wisconsin, and has manufacturing, sales and service facilities throughout the United States, Canada, Mexico, Europe and Asia. Regal’s common stock is a component of the S&P Mid Cap 400 Index and the Russell 2000 Index.
About This Directory
The 2014 Power Transmission Engineering Buyers Guide was compiled to provide you with a handy resource containing the contact information for significant suppliers of power transmission components. Accessories .. Page 28
Actuators .. Page 29
Adjustable Speed Drives Page 30
Bearings ... Page 32
Belts & Belt Drives Page 34
Brakes ... Page 35
Chain & Chain Drives Page 36
Clutches ... Page 36
Controls ... Page 38
Couplings and U-Joints Page 39
Fluid Power ... Page 41
Gear Drives ... Page 41
Gear Manufacturing Services Page 42
Gears .. Page 43
Industrial Hardware and Machine Parts Page 45
Linear Motion Devices Page 45
Lubrication ... Page 46
Motors .. Page 46
Resources .. Page 47
Seals .. Page 47
Sensors .. Page 47
Software ... Page 47
A to Z Company Index Page 48

Bold Listings throughout the Buyers Guide indicate that a company has an advertisement in this issue of Power Transmission Engineering.

How to Get Listed in the Buyers Guide
Although every effort has been made to ensure that this Buyers Guide is as comprehensive, complete and accurate as possible, some companies may have been inadvertently omitted. If you wish to add your company to the directory, we welcome you. Please visit www.powertransmission.com/getlisted.php to fill out a short form with your company information and Buyers Guide categories. These listings will appear online at www.powertransmission.com, and those listed online will automatically appear in next year’s printed Buyers Guide.

Handy Online Resources
The Power Transmission Engineering Buyers Guide — The listings printed here are just the basics. Visit our online buyers guide for the most comprehensive directory of suppliers of gears, bearings, motors, clutches, couplings, gear drives and other mechanical power transmission components, broken down into sub-category by type of product manufactured: www.powertransmission.com/directory/

2014 PTE Buyers Guide

ACCESSORIES

ABL Products Incorporated
AGI Automation Components
AISCO Industrial Couplings
ASI Technologies Inc.
AST Bearings
Accent Bearings Co. Inc.
Ace World Companies
Acorn Industrial Services
Advanced Test & Automation Inc.
Aerotech Inc.
Akon Gear and Engineering
All Metric Small Parts (amsp)
Amacoil, Inc.
American Collars & Couplings,inc.
American Plastics Depot
Ameridrives Power Transmission
Ametric / American Metric Corporation
Area Distributors Inc.
Ascent Precision Gear Corporation
Ashutosh Power TransBelts Limited
Atlanta Drive Systems Inc.
AutoParts Solutions PvtLtd
Axa S.r.l.
B&B Manufacturing, Inc.
BDI - Bearing Distributors Inc.
BRECflex Co., L.L.C.

Baldor Electric Company
5711 R S. Boreham, Jr. St.
P.O. Box 2400
Fort Smith, AR 72901
Phone: (479) 646-4711
Fax: (479) 648-5792
www.baldor.com

Bearing Service Company
Bearing Limited
Beijing THC Limited
Belcon Engineers P. Ltd.
BellowTech, LLC
Best Parts Online
Bevel Gears India Pvt. Ltd.
Bibby Transmissions
Bishop-Wisecarver Corp.
Brevini Power Transmission - Canada
Brewer Machine & Gear Co.
CENTA Corp.
CMS Vibration Solutions Ltd
Calcut Engineering Works Limited
Certified Reducer Rebuilders Inc
Challenge Power Transmission (Aust) Pty Ltd
Challenge Power Transmission PLC
Collars and Coupling
CominTec Srl
Conroll Corporation
Core Supply LLC
Cortec Corporation
Cross + Morse
Currie Enterprises
Custom Gear & Machine Inc.
Custom Machine & Tool Co. Inc.
Cyclo-Index
Daido Corporation of America
Dalton Bearing Service, Inc.
Danaher Motion and Thomson
Darbar Belting
Datasyst Engineering & Testing Services, Inc.
Baumbert Cromwell LLC
Davoll Gears Ltd.
Del-Tron Precision Inc.
Desch Canada Ltd.

Designatronics, Inc.
2101 Jericho Turnpike, New Hyde Park, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
info@designatronics.com
www.designatronics.com

Dr Sales Australia
Drive Components LLC
Drive Systems Technology Inc.
Electro Steel Engineering Company
Emerson Industrial Automation - Drives & Motor
Emerson Power Transmission
Equipment Concepts
Fife Corporation
Framo Morat Inc.
GMB Associates
Gaja Gears Pvt. Ltd.
Gates Corporation
Gayatri Gear Industries
Gear Master Inc.
Gleason K2 Plastics
Great Northern Products Inc.
HBK
HEIDENHAIN Corporation
Hangzhou Xingda Machinery Co. Ltd.
Hayes Manufacturing Inc.
Henan Contrast Gear Transmission Co., Ltd.
HI-Grade Inc.
Hydraulic Problems ?, Inc.
IBT, Inc.

IDC-USA
933 Western Drive, Indianapolis, IN 46241
Phone: (217) 244-9200
Fax: (317) 244-4600
sswaim@idc-usa.com
www.IDC-USA.com

ITW Heartland
Industrial Jig & Fixture
Industrial Pulley & Machine Co, Inc.
Intech Corporation
IntelliDrives, inc
International Distribution Alliance, Inc. (IDA, In
JVL Industri Elektronik A/S
Jason Industrial Inc.
K+S Services

KTR Corporation
122 Anchor Road, Michigan City, IN 46360
Phone: (219) 872-9100
Fax: (219) 872-9150
ktr-us@ktr.com
www.ktr.com

Kumar Industries
Kbb Antriebstechnik Gmbh
Kinefac Corporation
Kluber Lubrication North America L.P.
LM76 Linear Motion Bearings
Lovejoy, Inc.
MGT - Magnetic Gearing & Turbine Corp.
MMB Bearing Co. Inc.
MRSupply
MT Tool & Manufacturing
Magnum Manufacturing
Magtol, Inc.
Maguire Technologies

Martin Sprocket & Gear
3100 Sprocket Drive, Arlington, TX 76015
Phone: (817) 258-3000
Fax: (817) 258-3333
mail@martinspocket.com
www.martinspocket.com
Maurey Manufacturing Corporation

The Gear Industry Buyers Guide — If you manufacture gears or need information on suppliers of machine tools, tooling and services for gear manufacturers, please visit the buyers guide on Gear Technology’s website:
www.geartechnology.com/dir/
Niebuhr Gears
Ningbo Zhenhai Economic Development Zone
Road 88, Italy
Ningbo, China
Phone: +86574-86261172-800
Fax: +86574-86288064
sales@zhyd.com

North American Clutch Corp. (noram)
Norwin Electronics Limited
Novotec Argentina SRL
PI (Physik Instrumente) L.P. Piezo Actuator Nano
PTD Outlet: Power Transmission Distributors
Parker Hannifin Electromechanical Automation Divs
Performance Gear Systems, Inc.
Popular Mechanical Works
Portescap
Potomac Electric
Precipart
Precision Screw Thread
RGW Sales Canada
Rex Engineering Corp.
Ringball Corporation
Rockwell Automation
Rowland Co., The
S.M. Shah & Company

SEW-Eurodrive
1295 Old Spartanburg Hwy., Lyman, SC 29365
Phone: (864) 439-7537
Fax: (864) 439-7830
www.seweurodrive.com

SIPO-MLS

SKF USA Inc.
890 Forty Foot Road, Lansdale, PA 19446
Phone: (267) 436-6000
www SKF.com

SALlex Machine Tools

Schaefler Group USA, Inc.
308 Springhill Farm Road
FORT MILL, SC 29715
Phone: (803) 548-8500
Fax: (803) 548-8599
www.schaefler.us

Schneider Electric Motion Competency Center
Serapid Inc.
Sermoveter
Sesame Motor Corp.
Spaciality Motions, Inc.
Spn Schwaben Praezision
Steinmeyer Inc.

Sterling Equipment

T.E.A. Machine Components
Technico
Tolomatic, Inc.
VL Motion Systems Inc.
WEG
Warner Linear
Wittenstein (formerly alpha gear drives)
Wyko - London & Overseas Supplies

ADJUSTABLE SPEED DRIVES

AISCO Industrial Couplings
ASI Technologies Inc.
Ace World Companies
Acme Gear Co.
Acom Industrial Services
Aerotech Inc.
Agro Engineers
Akgears, LLC
Allied Motion
Amacoil, Inc.

Ametric / American Metric Corporation
AndanteX USA Inc.
Area Distributors Inc.
Atlanta Gear Works, Inc.

Automation Direct
3505 HUTCHINSON ROAD, CUMMING, GA
Phone: (800) 633-0405
Fax: (770) 644-4212
sales@automationdirect.com
www.automationdirect.com

B&B Manufacturing, Inc.
BDI - Bearing Distributors Inc.

Baldor Electric Company
5711 R.S. BOREHAM, JR. ST.
P.O. BOX 2400
FORT SMITH, AR 72901
Phone: (479) 564-4711
Fax: (479) 564-5792
www.baldor.com

Bearing Service Company
Beaver Aerospace and Defense Inc.
Bevel Gears India Pvt. Ltd.
Bison Gear and Engineering Corp.
Bonfiglioli Riduttori S.p.A.
Bonfiglioli USA
Boston Gear
Breveni Power Transmission - Canada
Breveni USA
Brever Machine & Gear Co.
Buehler Motor, Inc.
Calicut Engineering Works Limited
Carlisle Power Transmission
Carlyle Johnson Machine Co. LLC, The
Central Gear & Machine
Certified Reducer Rebuilders Inc
Challenge Power Transmission PLC
Cleveland Gear Co.
Connv Corporation
Custom Motors Inc.
Cutes Corporation
D&D Intl. Corp.
Dalton Bearing Service, Inc.
Danaher Motion and Thomson
Darrell Gears Ltd.
Duff Norton Australia
Dunkermotoren USA Inc.
Dynex/Rivett Inc.
Electronic Machine Parts
Emerson Industrial Automation - Drives & Motor
Essential Power Transmission Pvt. Ltd.
FMC Engineering
Fairchild Industrial Products Co.
Festo Corporation
GMB Associates
Gayatri Gear Industries
Gil Equipamentos Industriais Ltda.
Gleason K2 Plastics
Hallmark Industries Inc.
Houston Pump and Gear
IAI America, Inc.
IBT, Inc.

IDC-USA
933 WESTERN DRIVE, INDIANAPOLIS, IN 46241
Phone: (317) 244-9200
Fax: (317) 244-4600
www.IDC-USA.com

ITW Heartland
Industrial Clutch Parts Ltd.
Intellidrives, Inc
K+S Services
Kamar Industries
LYC North America Inc
Lab Threads & Gear Works, Inc.
MROSupply
Mavilor Motors, S.a.
Midwest Motion Products
Motion Industries
Ngt Specialty Valves
Niebuhr Gears

ITW Heartland
Industrial Clutch Parts Ltd.
Intellidrives, Inc
K+S Services
Kamar Industries
LYC North America Inc
Lab Threads & Gear Works, Inc.
MROSupply
Mavilor Motors, S.a.
Midwest Motion Products
Motion Industries
Ngt Specialty Valves
Niebuhr Gears

AZL Industrial Couplings
ASI Technologies Inc.
Ace World Companies
Acme Gear Co.
Acom Industrial Services
Aerotech Inc.
Agro Engineers
Akgears, LLC
Allied Motion
Amacoil, Inc.

Ametric / American Metric Corporation
AndanteX USA Inc.
Area Distributors Inc.
Atlanta Gear Works, Inc.
Flexible Couplings

Jaw Couplings

- No lubrication
- Easy installation
- No metal-to-metal contact
- Oil, dirt, sand, moisture, grease resistant
- Easy inspection of load carrying element (spider)
- Flexibility of angular or parallel misalignment of shafts by Buna-N element permits smooth power transmission

- Two styles of Jaw Couplings available:
 - Martin Super (MS), for higher horsepower
 - Martin Universal (ML), completely interchangeable

QUADRA-FLEX®

This couplings come in a variety of styles and designs to meet specific customer needs. These styles include flanges and sleeves of various types and materials. The total product line includes 13 sizes varying in torque ratings up to 72,000 in-lb. The sleeves are available in 4 different compounds:

- **TPR** (Types JEM, JEMS, EM)
- **EPDM** (Type E)
- **Neoprene** (Type N)
- **Hytrel®** (Type H & HS)
Ningbo Zhongyi Hydraulic Motor Co, Ltd was found in 1971, which is the high tech mfg. expert of orbital motors, steering control units, transmission and mobile motors. At present we have two manufacturing bases, one is in Ningbo city covering an area of 44,000 square meters, the other one is in Wuhu city with an area of 80,000 square meters. Our manufacturing workshop meets the international standards and the manufacture and test equipments are leading technologically home and abroad. The staffs of Zhongyi will creat first class products, services and brand hands in hands with you.

For more information, pls visit www.zihyd.com.

Email: sales@zihyd.com Linda@zihyd.com
Tel: 0086-574-86378895 Fax: 0086-574-86378310
Specialty Motions, Inc.
Sprockets Australia Pty. Ltd.

Sterling Instrument
2101 JERICHO TURNPIKE, NEW HYDE PARK, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
sdp-sisupport@sdp-si.com
www.sdp-si.com

Stock Drive Products
2101 JERICHO TURNPIKE, NEW HYDE PARK, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
sdp-sisupport@sdp-si.com
www.sdp-si.com

Supreme Gear Co.
T.E.A. Machine Components
TB Wood's
TSS Rotterdam B.V.
Tef - Cap Industries
Top Machinery & Equipment (Zhengzhou) Ltd
Torque Transmission
Transply Inc.
Tristate Bearing & Supply Co. Inc.
Trojan Gear Inc.
Toukaki of Canada Limited
VL Motion Systems Inc.
Vision Quality Components, Inc
WD Bearing America
WMH Transmissions Ltd
Wyko - London & Overseas Supplies
Xuzhou BeiLai Engineering Machinery Co., Ltd
Yogi Bearings
pylon Gears (Pty) Ltd

BELTS & BELT DRIVES
ABL Products Incorporated
Accent Bearings Co. Inc.

Ace World Companies
Acorn Industrial Services
Agro Engineers
Akon Gear and Engineering
Amacoil, Inc.
Aman Transmission Co
American Gear & Engineering
American Gear, Inc.
American Plastics Depot
Ametric / American Metric Corporation
Area Distributors Inc.
Ascent Precision Gear Corporation
Ashutosh Power TransBelts Limited
Avion Technologies Inc.
B&B Manufacturing, Inc.
BDI - Bearing Distributors Inc.
BRECOflex CO., L.L.C.

Baldor Electric Company
5711 R.S. BOREHAM, JR. ST.
P.O. BOX 2400
FORT SMITH, AR 72901
Phone: (479) 646-4711
Fax: (479) 648-5792
www.baldor.com

Bearing Service Company
Beijing THC Limited
Belcon Engineers P. Ltd.
Bervina
Bishop-Wisecarver Corp.
Boca Bearing Company
Bowman Hollis Mfg
Brevini Power Transmission - Canada
Brewer Machine & Gear Co.
Butler Gear
Calcutra Engineering Works Limited
Capstan Atlantic
Carleide Power Transmission
Carsi-Miller Gear Co., Inc.

WorldWide Electric Corporation
1-800-808-2131
www.worldwideelectric.net

In Stock!

Helical Inline Speed Reducers:

• 1/4 HP - 75 HP; ALL RATINGS IN STOCK
• Box sizes: 37 - 147; Ratios: 5:1 - 120:1
• Cast iron housing is precision processed for better rotation and quieter operation
• Drop-in replacement for most major inline reducer brands
• 2 year warranty

Call Us Now To Get Your Special Pricing!
CHAIN & CHAIN DRIVES

ABL Products Incorporated
Accent Bearings Co. Inc.
Accurate Gear and Machine, Inc.
Acom Industrial Services
Agro Engineers
Akron Gear and Engineering
American Plastics Depot
Ametec / American Metric Corporation
Area Distributors Inc.
Ascent Precision Gear Corporation
B&B Manufacturing, Inc.

B&R Machine and Gear Corp.
4809 U.S. HWY. 45
SHARON TN 32025
Phone: (731) 456-2636 or (800) 238-0651
Fax: (731) 456-3073
inquiry@brgear.com
www.brgear.com

BDI - Bearing Distributors Inc.
Bearing Service Company
Bearings Limited
Beijing THC Limited
Bishop-Wisecarver Corp.
Bowman Hollis Mfg
Brevini Power Transmission - Canada
Brewer Machine & Gear Co.
C & B Gear & Machine
Calicut Engineering Works Limited
Central Gear & Machine
Certified Reducer Builders Inc
Challenge Power Transmission (Aust) Pty Ltd
Challenge Power Transmission PLC
Cloyes Gear & Products Inc.
Commercial Gear & Sprocket Co. Inc.
Core Supply LLC
Cross + Morse
D&D Intl. Corp.
Daido Corporation of America
Dalton Bearing Service, Inc.
Darbar Belting
Davall Gears Ltd.

Designatronics, Inc.
201 JERICHO TURNPIKE, NEW HYDE PARK, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
info@designatronics.com
www.designatronics.com

Diamond Chain Company
Electro Steel Engineering Company
Emerson Power Transmission

First Gear Engineering & Technology
7006 FREEDOM WAY
FORT WAYNE, IN 46818
Phone: (260) 490-3238
Fax: (260) 490-4093
greg@first-gear.com
www.first-gear.com

Framo Morat Inc.
GBM Associates
Gates Corporation
Gayatri Gear Industries
Gear Master Inc.
Hangzhou Xingda Machinery Co. Ltd.
Henan Contrust Gear Transmission Co., Ltd.
IBT, Inc

IDC-USA
933 WESTERN DRIVE, INDIANAPOLIS, IN 46241
Phone: (317) 244-9200
Fax: (317) 244-4600
swwaim@idc-usa.com
www.idc-usa.com

Kamar Industries
MG - Magnetic Gearing & Turbine Corp.
MT Tool & Manufacturing

Martin Sprocket & Gear
300 SPROCKET DRIVE, ARLINGTON, TX 76015
Phone: (817) 258-3000
Fax: (817) 258-3333
mail@martinsprocket.com
www.martinsprocket.com

Ming Chang Traffic Parts Mfg.
Motion Industries
Moventas Ltd.
North American Clutch Corp. (noram)
Nu-Tek Couplings Pvt. Ltd
PIC Design
PTD Outlet: Power Transmission Distributors
Pacific Industries
Paul’s Transmission Shenzhen Co., Ltd
Peer Bearing Company
Performance Gear Systems, Inc.
Pix Europe Limited
Pix Transmissions Limited
Plastock - Putnam Precision Molding, Inc.
Powermax Import & Export Co., Ltd
Pulley Manufacturers International Inc.
Quality Transmission Components
RBI Bearing Inc.
René Baer AG
Ringball Corporation
Rockwell Automation
Rowland Co., The

SKF USA Inc.
890 FORTY FOOT ROAD, LANSdale, PA 19446
Phone: (267) 436-6000
www.skf.com

SKG Enterprises
ST Gear & Machine LLC
Seraphid Inc.
Sprockets Australia Pty. Ltd.

STOCK Drive Products
201 JERICHO TURNPIKE, NEW HYDE PARK, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
sdp-sisupport@sdp-si.com
www.sdp-si.com

Team Industries
Torque Transmission
Transply Inc.
Tristate Bearing & Supply Co. Inc.
Trojan Gear Inc.
Tsukabi of Canada Limited
VL Motion Systems Inc.
WMH Transmissions Ltd
Wyko - London & Overseas Supplies
Yogi Bearings

CLUTCHES

AISCO Industrial Couplings
Accent Bearings Co. Inc.
Accotec Industrias E Comércio
Andantex USA Inc.
Applied Power Solutions
Area Distributors Inc.
Ascent Precision Gear Corporation
Bearing Service Company
Bibby Transmissions
Boston Gear
CENTA Corp.

Cabat Inc.
5301 31ST STREET
RACINE WI 53401-1616
Phone: (262) 898-5937
Fax: (262) 898-5937
bgregg@cabatinc.com
www.cabatinc.com

Carlyle Johnson Machine Co. LLC, The
Certified Reducer Builders Inc
ComlinTec Srl
Commercial Gear & Sprocket Co. Inc.
Coremo Ocmaza S.r.l.
THE SURVIVOR

FOR EXTREME DUTY POWER TRANSMISSION:
OUR ZERO MAINTENANCE DISC PACK COUPLINGS.
COUPLINGS & U-JOINTS

AGI Automation Components
AISCO Industrial Couplings
Accent Bearings Co. Inc.
Accurate Gear and Machine, Inc.
Acision Equipots Inds Ltda
Acionac Industria E Comercio
Acorn Industrial Services
Agro Engineers
Ameridrives
Ameridrives Power Transmission
Ametric / American Metric Corporation
Annflex Bellows & Compensators
Applied Power Solutions
Area Distributors Inc.
Ascent Precision Gear Corporation
Atlanta Gear Works, Inc
Axu S.r.l.

B&B Machine and Gear Corp.
4809 U.S. HWY, 45
SHARON TN 38255
Phone: (731) 456-2636 or (800) 238-0651
Fax: (731) 456-3073
inquiry@brgear.com
www.brgear.com

BDI - Bearing Distributors Inc.
BRECOflex CO., L.L.C.
Baker Bearing Company
Bearing Service Company
Beijing THC Limited
Belcon Engineers P. Ltd.
Belden Inc.
BellowsTech, LLC
Bervina
Bevel Gears India Pvt. Ltd.
Bibby Transmissions
Boneng Transmission USA LLC
Boston Gear
Brevini Power Transmission - Canada
C-B Gear & Machine
CENTA Corp.

Cabat Inc.
5501 21ST STREET
RACINE WI 53401-1616
Phone: (262) 898-5937
Fax: (262) 554-7503
Bgereuel@cabatinc.com
www.cabatinc.com

Calicut Engineering Works Limited
Carlyle Johnson Machine Co. LLC, The
Certified Reducer Rebuilders Inc
Cestari Industrial e Comercial S.A.
Challenge Power Transmission (Aust) Pty Ltd
Challenge Power Transmission PLC
Chengdu Talent Industrial Co., Ltd.
Climax Metal Products Company
CominTec Srl
Commercial Gear & Sprocket Co. Inc.

Stainless Steel

Our NEW Stainless Steel gearboxes are IP 69K rated. The smooth and rounded surface allows for easy cleaning.
• Non-fretting motor connection
• IP 69K rated
• Dimensional drop-in for most worm gear manufacturers
• Cone Drive TRUE Double-Enveloping worm gearing

ENGINEERED TO KEEP YOU MOVING.
(888) 994-2663 www.conedrive.com

Made for Motion
KTR
Power Transmission Solutions

SYNTAX® Torque Limiter
BoWex® GT Coupling
ROTEX® Curved Jaw Coupling

• One-stop shopping for power transmission components
• Quality, reliability & compact design
• Online selection tools

KTR Corporation
219-872-9100
www.ktr.com
Core Supply LLC
Cross + Morse
Custom Machine & Tool Co. Inc.
Dalton Bearing Service, Inc.
Davall Gears Ltd.
David Brown
DePe Gear Company Ltd
Desch Canada Ltd.

Designatronics, Inc.
2101 Jericho Turnpike, New Hyde Park, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
info@designatronics.com
www.designatronics.com

DieQua Corp.
180 Coventry Drive, Bloomingdale, IL 60108
Phone: (630) 980-1133
Fax: (630) 980-1232
info@diequa.com
www.diequa.com

Dn Sales Australia
Drive Lines Technologies Ltd
Duff Norton Australia
Electro Steel Engineering Company
Electromatic Engineers Pvt. Ltd
Emerson Power Transmission
Equipment Concepts
Flexcon Engineers Private Limited
Formsprag Clutch
GAM Gear
GMB Associates
Gayatri Gear Industries
Gear Master Inc.
Ghatge Patil Industries
Gleason K2 Plastics
Gummi Usa
Hangzhou Xingda Machinery Co. Ltd.
Hayes Manufacturing Inc.
Henan Construt Gear Transmission Co., Ltd.
Hi-Grade Inc.
Houston Pump and Gear
Huco Dynatork
IBT, Inc

IDC-USA
933 Western Drive, Indianapolis, IN 46241
Phone: (317) 244-9200
Fax: (317) 244-4600
sswaim@idc-usa.com
www.IDC-USA.com

Industrial Clutch Parts Ltd.
Inertia Dynamics, Inc.

KTR Corporation
122 Anchor Rd, Michigan City, IN 46360
Phone: (219) 872-9100
Fax: (219) 872-9150
ktr_us@ktr.com
www.ktr.com

KTR Technology
KTR Technology GmbH
Kinetik Corporation
Lovejoy, Inc.
MAG S.p.A.
MGT - Magnetic Gearing & Turbine Corp.
Mach III Clutch Inc.
Magnetic Technologies Ltd
Marine Specialties, Inc.

马丁斯普洛克&耶尔
3100 Procket Drive, Arlington, TX 76015
Phone: (817) 258-3000
Fax: (817) 258-3333
Email: martinsprocket@www.martinsprocket.com

Master Bond, Inc.
Matrix International
Maurey Manufacturing Corporation
Mayr Corporation
Minsk Gear Works
Motion Industries
Moventa Ltd.
NDE Power Transmissions
Netshape Technologies, Inc.
North American Clutch Corp. (noram)
Novotec Argentina SRL
Nu-Teck Couplings Pvt. Ltd
OEP Couplings, a Division of Oren Elliott Products
OnDrives Ltd
Orteck
PIC Design
PTD Outlet: Power Transmission Distributors
Pacific Industries
Palmer Johnson Power Systems
Paul’s Transmission Shenzhen Co., Ltd
Pax Europe Limited
Pax Transmissions Limited
Popular Mechanical Works
Powermach Import & Export Co. Ltd.

R+W America
1120 Tower Lane, Bensenville, IL 60106
Phone: (630) 521-9911
Fax: (630) 521-0366
info@rw-america.com
www.rw-america.com

RUBENA a.s.
Rathipolbyrd Pty Ltd.
René Baer AG
Ringball Corporation
Ringspan Corporation
Rowland Co., The
SIPCO-MLS

SKF USA Inc.
890 Forty Foot Road, Lansdale, PA 19446
Phone: (267) 436-6000
www.skf.com

Servometer
Siemens Energy & Automation
Siemens Industry, Inc.
Sprockets Australia Pty. Ltd.

Sterling Instrument
2101 Jericho Turnpike, New Hyde Park, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
Email: sdp-sisupport@sdp-si.com
www.sdp-si.com

SDP Stock Drive Products
Setting Ideas into Motion
Engineered Coupling Solutions
Off-the-shelf
www.sdp-si.com

Supreme Gear Co.
FLUID POWER

Acorn Industrial Services
BDI - Bearing Distributors Inc.
Brevini Power Transmission - Canada
CENTA Corp.

Conedrive
240 East 12th Street
Traverse City, MI 49685-0272
Phone: (888) 994-2663
Fax: (888) 907-2663
orders@conedrive.com
www.conedrive.com

Cotta Transmission Co. LLC
Dalton Bearing Service, Inc.
Dynex/Rivet Inc.
Future Technologies, Inc.
Hayes Manufacturing Inc.
Helium Leak Testing, Inc.
Houston Pump and Gear
Hydraulic Problems ?, Inc.
IBT, Inc

IDC-USA
933 Western Drive, Indianapolis, IN 46241
Phone: (317) 244-9200
Fax: (317) 244-4600
sswaim@idc-usa.com
www.IDC-USA.com

K+S Services
KTR Corporation
122 Anchor Road, Michigan City, IN 46360
Phone: (219) 872-9100
Fax: (219) 872-9150
Ktr-us@ktc.com
www.ktc.com

Lovejoy, Inc.
MICO, Incorporated
Motion Industries
Netshape Technologies, Inc.
Ngt Specialty Valves

Ningbo Zhongyi Hydraulic Motor Co., Ltd.
NINGBO ZHENHAI ECONOMIC DEVELOPMENT ZONE, ROAD #1, ITALY
NINGBO, CHINA
Phone: (+86) 574-86265172-800
Fax: (+86) 574-8628064
sales@zhyd.com
www.zhyd.com

OEM International Inc.
Ortech
Palmer Johnson Power Systems
Popular Mechanical Works
RUBENA a.s.

Rowland Co., The
S.M. Shah & Company
T.E.A. Machine Components
TSS Rotterdam B.V.
TVT America, Inc.
Var-Spe Variatiori Oleodinamici
Wyko - London & Overseas Supplies
Zero-Max

GEAR DRIVES

ASI Technologies Inc.
Accent Bearings Co. Inc.
Accurate Gear and Machine, Inc.
Ace World Companies
Acionac Industria E Comércio
Acorn Gear Co.
Acorn Industrial Services
Aero Gear Inc.
Agro Engineers
Akgears, LLC
Akrone Gear and Engineering
Allen Gear Ltd.
Allied Motion
American Gear & Engineering
American Plastics Depot
American/ American Metric Corporation
Ancon Gear & Instrument Corp.
Andantex USA Inc.
Area Distributors Inc.

Arrow Gear Co.
2301 Curtis Street
Downers Grove, IL 60515
Phone: (630) 960-7640
Fax: (630) 960-0253
quote@arrowgear.com
www.arrowgear.com

Atlanta Drive Systems Inc.
Atlanta Gear Works, Inc
Autoparts Solutions PvtLtd
Avion Technologies Inc.
B&B Manufacturing, Inc.

B&R Machine and Gear Corp.
4809 U.S. HWY. 45
Sharon, TN 38255
Phone: (731) 456-2636 or (800) 238-0651
Fax: (731) 456-3073
inquiry@bregear.com
www.bregear.com

BDI - Bearing Distributors Inc.

Baldor Electric Company
5711 R.I., Boreham, J.R. St.
P.O. BOX 2400
Fort Smith, AR 72901
Phone: (479) 646-4711
Fax: (479) 648-5792
www.baldor.com
Bauer Gear Motor
Bearings Service Company
Bevel Gears India Pvt. Ltd.
Bison Gear and Engineering Corp.
Bodine Electric Company
Boneng Transmission (Suzhou) Co., Ltd.
Boneng Transmission USA LLC
Bonfiglioli Riduttori S.p.A.
Bonfiglioli USA
Boston Gear
Brad Foote Gear Works, Inc
Brevini Power Transmission - Canada
Brevini Wind USA
2400 N. Priority Way
Vorityown, IN 47396
Phone: (765) 759-2128
Fax: (765) 759-4728
dale.harder@brevini.com
www.breviniwind.com

Buehler Motor, Inc.
C-B Gear & Machine
Calcut Engineering Works Limited
Central Gear & Machine
Certified Reducer Rebuilders Inc
Cestari Industrial e Comercial S.A.
Challenger Power Transmission (Aust) Pty Ltd
Chenta USA
Cleveland Gear Co.
Cogmatic, Inc.
Columbia Gear Corp.

Cone Drive
240 East 12th Street
Traverse City, MI 49685-0272
Phone: (888) 994-2663
Fax: (888) 907-2663
orders@conedrive.com
www.conedrive.com

Cotta Transmission Co. LLC
Currie Enterprises
Curtis Machine Co. Inc.
Custom Sensors & Technologies
Dalton Bearing Service, Inc.
Danaher Motion and Thomson
Davall Geare Ltd.
David Brown
Delroyd Worm Gear
Delta Gear Company
Desh Canada Ltd.

Designatronics, Inc.
2101 Jericho Turnpike, New Hyde Park, NY 11040
Phone: (516) 328-3300
Fax: (516) 328-8827
info@designatronics.com
www.designatronics.com

DieQua Corp.
180 Covington Drive, Bloomingdale, IL 60108
Phone: (630) 980-1133
Fax: (630) 980-1232
info@diequa.com
www.diequa.com
Drive Line Technologies Ltd
Duff Norton Australia
Dunkermotoren USA Inc.
EM Gear / Dae Seong Gear
Electronic Machine Parts
Emerson Industrial Automation - Drives & Motor
Emerson Power Transmission
Essential Power Transmission Pvt. Ltd.
Excel Gear, Inc.
11865 MAIN STREET, ROSCOE, IL 61073
Phone: 815-623-3414
Fax: 815-623-3314
chin@excelgear.com
www.excelgear.com

Exlar Corporation
FMC Engineering
Fairchild Industrial Products Co.
Framo Morat Inc.
GAM Gear
GKN Driveline
GMB Associates
Gayatri Gear Industries
Ghatge Patil Industries
Gleason K2 Plastics
Groshopp Inc.
HPB Motion Control Co. Ltd.
Hallmark Industries Inc.
Hangzhou Xingda Machinery Co. Ltd.
Harmonic Drive (Canada)
Haumea Srl
Henan Contrast Gear Transmission Co., Ltd.
Hoffmann Technologies Ag
Houston Pump and Gear
I.B.T., Inc.
IDC-USA
933 WESTERN DRIVE, INDIANAPOLIS, IN 46241
Phone: (317) 244-9200
Fax: (317) 244-4600
sswaim@idc-usa.com
www.IDC-USA.com

ITW Heartland
Industrial Jig & Fixture
JVL Industri Elektronik A/S
Jahn - Kestermann GmbH & Co. Kg
K+S Services
Kumar Industries
LEESON Electric

Lafert North America
5620 KENNEDY RD.
MISSISSAUGA ON L4Z 2A9
Phone: (905) 629-1939 or toll free (800) 661-6413
Fax: (905) 629-2852
ptsales@lafertna.com
www.lafertna.com

Marswell Engineering Ltd.
Maxon Precision Motors Inc
Midwest Gear & Tool, Inc.
Midwest Motion Products
Mijo Precision Gearing
Minsk Gear Works
Motion Industries
Moventas Ltd.
NAC Harmonic Drive
Niebuhr Gears

Ningbo Zhongyi Hydraulic Motor Co. Ltd.
NINGBO ZHONGYI ECONOMIC DEVELOPMENT ZONE ROAD 88, ITALY
NINGBO
CHINA
Phone: +(86) 574-86261172-800
Fax: +(86) 574-86288064
sales@zhyyd.com
www.zhyyd.com

Nord Drivesystems
Norwin Electronics Limited
Ondrives Ltd
Onvio LLC
Ormec
P. G. DRIVE
PDT Design
PDT Outlet: Power Transmission Distributors
Palmer Johnson Power Systems
Parker Hannifin Electromechanical Automation Divis
Performance Gear Systems, Inc.
Phytron, Inc.
Plastock - Putnam Precision Molding, Inc.
Popular Mechanical Works
Portescap
Power Engineering and Manufacturing
Power Transmission Engineers
Precipart
Precision Microdrives Limited
QTC Metric Gears
Quality Reducer Service
Quality Transmission Components
RI Link International, Inc.
Renk Test Systems
Rex Engineering Corp.
Ringball Corporation
Rockwell Automation
Rowland Co., The

SEW-Eurodrive
1295 OLD SPARTANBURG HWY., LYMAN, SC 29635
Phone: (864) 439-7537
Fax: (864) 439-7830
www.seweurodrive.com

SIPCO-MLS
Sailer Machine Tools
Sam Gears India Pvt.Ltd
Sesame Motor Corp.
Seto Precision Spindles, Slides & Service
Siemens Energy & Automation
Siemens Industry, Inc.
Sintech
Silti Spa Riduttori
Sokhi Heli-Wom Gears Pvt. Ltd.
Source Engineering Inc.
Spencer Pettus
Spline Gauges
Spn Schwaben Praezision
Star Gears

SI Sterling Instrument
Your Partner in Innovation
Engineered Precision Gear Solutions
Customized Design
www.sdp-si.com

Var-Spe Variator Oleodinamici
WEG
WMH Transmissions Ltd
WPT Power Corporation
Wittenstein (formerly alpha gear drives)

Worldwide Electric Corp.
1 GROVE ST. #201B
PITTSFORD, NY 14534
Phone: (800) 808-2131
Fax: (800) 711-1616
www.worldwideelectric.com

Wyko - London & Overseas Supplies
Xtek, Inc.
Xuzhou BeiLai Engineering Machinery Co., Ltd
ZIRME

ZN Transmission Plant
Zero-Max
pylon Gears (Pty) Ltd

GEAR MANUFACTURING SERVICES

ABL Products Incorporated
ASI Technologies Inc.
Accent Bearings Co. Inc.
Accurate Gear and Machine, Inc.
Acme World Companies
Acorn Co.
Acorn Industrial Services
Agro Engineers
Allen Gears Ltd.
Allied Gear Co.
Allied Specialty Precision Inc.
American Gear & Engineering
American Gear, Inc.
American Plastics Depot
American Swiss Products Co., Inc.
Ametric / American Metric Corporation
Ancon Gear & Instrument Corp.
Ascent Precision Gear Corporation
Atlanta Gear Works, Inc
Autoparts Solutions Pvt Ltd
Avion Technologies Inc.
B&B Manufacturing, Inc.

B&B Machine and Gear Corp.
4809 U.S. HWY. 45
SHARONTN 38255
Phone: (731) 456-2636 or (800) 238-0651
Fax: (731) 456-3073
inquiry@bbrgear.com
www.bbrgear.com

BC Gear Inc
BC Manufacturing
Bearings Service Company
Beaver Aerospace and Defense Inc.

Beya Gear Services
8230 COUNTY FARM ROAD
WINFIELD, IL 60190
Phone: (630) 209-1652
chuck@beyaegis.com
www.beyaegis.com

Bharat Gear Ltd.
Brelie Gear Company, Inc
Brevini Power Transmission – Canada
Baldor Electric Company

5711 S. BOREHAM, JR. ST.
P.O. BOX 2400
FORT SMITH, AR 72901
Phone: (479) 566-4711
Fax: (479) 648-5792
www.baldor.com

Bearing Limited

Beaver Aerospace and Defense Inc.

Befared

Beijing THC Limited

Bevel Gear India Pvt. Ltd.

Bharat Gears Ltd.

Bison Gear and Engineering Corp.

Bonfiglioli Riduttori S.p.A.

Boston Gear

Brother Gearmotors

Brother Gearmotors

Brookville Gear Works

Brookville Gear Works

Brookville Gear Works

Brevini Wind USA

2400 N. PRIORITY WAY
BROOKVILLE, OH 45309
Phone: (513) 925-8900
Fax: (513) 925-8910
info@breviniwind.com

Brewer Machine & Gear Co.

Brewer Machine & Gear Co.

Brother Gear Motors

200 CROSSING BLVD.
BRIDGEWATER, NJ 08807
Phone: (908) 623-6283
gearmotors@brevini.com

Buffalo Gear, Inc.

Butler Gear

C & U America, LLC

45901 FIVE MILE ROAD
PLYMOUTH, MI 48170
Phone: (734) 656-0260
Fax: (734) 656-0261
contact@cu-bearing.com
www.cu-bearing.com

C-B Gear & Machine

CIMA S.p.A.

Calcut Engineering Works Limited

Capstan Atlantic

Carnes-Miller Gear Co., Inc.

Cattini & Figlio S.r.l.

Central Gear & Machine

Certified Reducer Rebuilders Inc

Chenta USA

Chongqing Rainbow M&E Co., Ltd

Circle Gear & Machine Co.

1501 S. 5TH COURT
CICERO, IL 60604
Phone: (708) 652-1000
Fax: (708) 652-1100
circlegear@circlegear.com
www.circlegear.com

Clark Gear Works, Inc.

Clarke Engineering Inc. (Clarke Gear Co.)

Cleveland Gear Co.

Cloyes Gear & Products Inc.

Cogmatic, Inc.

Columbia Gear Corp.

Commercial Gear & Sprocket Co. Inc.

Cone Drive

240 EAST 12TH STREET
TRaverse City, MI 49685-0272
Phone: (888) 994-2663
Fax: (888) 907-2663
orders@conedrive.com
www.conedrive.com

Cross & Morse

Curtis Machine Co. Inc.

Custom Gear & Machine Inc.

Custom Machine & Tool Co. Inc.

D & G Steel & Son Engineering Ltd.

D & D Int'l. Corp.

Dalton Bearing Service, Inc.

Davall Gears Ltd.

David Brown

De Pe Gear Company Ltd

Delroyd Worm Gear

Delta Gear Corp.

Delta Research Corp.

Designatronics, Inc.

2101 JERICHO TURNPIKE, NEW HYDE PARK, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
info@designatronics.com
www.designatronics.com

Drive Lines Technologies Ltd

Dunkermotoren USA Inc.

EM Gear / Dae Seong Gear

Electronic Machine Parts

Emerson Power Transmission

Essential Power Transmission Pvt. Ltd.

Excel Gear, Inc.

11865 MAIN STREET, ROCIO, IL 61073
Phone: 815-623-3414
Fax: 815-623-3314
chinn@excelgear.com
www.excelgear.com

FMC Engineering

First Gear Engineering & Technology

7660 FREEDOM WAY
FORT WAYNE, IN 46818
Phone: (260) 490-3238
Fax: (260) 490-4093
greg@firstgear.com
www.firstgear.com

Forest City Gear Co.

11715 MAIN STREET
ROCIO, IL 61073
Phone: (815) 623-2168
Fax: (815) 623-6620
rmikel@fcgear.com
www.fcgear.com

Framo Morat Inc.

GKN Driveline

GMB Associates

GMN Bearing USA, Ltd.

Gayatra Gear Industries

Gear Design & Service Pty. Ltd.

Gear Manufacturing Inc.

Gear Master Inc.

GearVisions, Inc.

Gleason K2 Plastics

Groshopp Inc.

Hangzhou Xingda Machinery Co. Ltd.

Havlik Gear

Hayes Manufacturing Inc.

Henan Contrust Gear Transmission Co., Ltd.

Hoffmann Technics Ag

Houston Pump and Gear

IBT, Inc

IDC-USA

933 WESTERN DRIVE, INDIANAPOLIS, IN 46241
Phone: (317) 244-9200
Fax: (317) 244-4600
sswaim@idc-usa.com
www.IDC-USA.com

IG Watteneue

ITW Heartland

Industrial Jig & Fixture

Industrial Pulley & Machine Co, Inc.

Intech Corporation

Involute Simulation Software Inc.

JVL Industri Elektronik A/S

Jahnel - Kestermann Gmbh & Co. Kg

Kamar Industries

Kaydon Corporation Bearings Division

Kleiss Gears, Inc.

Lyc North America Inc

MT Tool & Manufacturing

Magnum Manufacturing

Marswell Engineering Ltd.

Martin Sprocket & Gear

3100 SPROCKET DRIVE, ARLINGTON, TX 76015
Phone: (817) 258-3000
Fax: (817) 258-3333
mail@martinsprocket.com
www.martinsprocket.com

McInnes Rolled Rings

1533 EAST 12TH STREET
ERIE, PA 16501
Phone: (814) 459-4495
Fax: (814) 459-8443
sales@mcrings.com
www.mcinnesrolledrings.com

Midwest Gear & Tool, Inc.

Midwest Motion Products

Mijno Precision Gearing

Mini Gears (Stockport) Ltd.

Mini-Broach Machine Company

Minsk Gear Works

Motion Industries

Moventas Ltd.

Netshape Technologies, Inc.

New Allenberry Works (Deepak Industries Ltd.)

Niebuhr Gears

Nissel Corporation of America

Nu-Tech Couplings Pvt. Ltd

Ongears - Ondrives Export Gears

Ontario Gear and Spline

P. G. DRIVE

PIC Design

PDT Outlet: Power Transmission Distributors Performance Gear Systems, Inc.

Plastock - Putnam Precision Molding, Inc.

Popular Mechanical Works

Portescap

Pragati Transmission Pvt Ltd

PrecisArt

Precision Screw Thread

Precision Technologies Group (PTG) Ltd.

Pulley Manufacturers International Inc.
Suhner Manufacturing Corp.
Summito Machinary Corp. of America
Supreme Gear Co.
Suzhou Asia Pacific Metal Co., Ltd.
T.E.A. Machine Components
Taiwan Precision Gear Corp.
Team Industries
Toledo Gearmaster & Bluffton Motors Company
Tool Masters India
Torque Transmission
Transply Inc.
Tristate Bearing & Supply Co. Inc.
Triumph Gear Systems - Acer Industries
Trojan Gear Inc.
Tsukibot Canada Limited
Unigear Industries
V CST LP
VW Broaching Service Inc.
 Venture Products International
Vision Quality Components, Inc
WMH Transmissions Ltd
Wyko - London & Overseas Supplies
Xtek, Inc.
Yieh Chen Machinery (Six Star Group)
ZRIME
ZZN Transmission Plant
Zero-Max
pylon Gears (Pty) Ltd

INDUSTRIAL HARDWARE AND MACHINE PARTS

All Metric Small Parts (aMsp)
American Plastics Depot
Daemar Inc.
Delta Gear Company
Designatronics, Inc.
2101 JERICHO TURNPIKE, NEW HYDE PARK, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
info@designatronics.com
www.designatronics.com
Gear Master Inc.
Hi-Grade Inc.
Houston Pump and Gear

Martin Sprocket & Gear
3100 SPROCKET DRIVE, ARLINGTON, TX 76015
Phone: (817) 258-3000
Fax: (817) 258-3333
mail@martinsprocket.com
www.martinsprocket.com

Motion Industries
Netshape Technologies, Inc.
Powermach Import & Export Co.,Ltd
Premier Udyog
SKG Enterprises

Sterling Instrument
2101 JERICHO TURNPIKE, NEW HYDE PARK, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
sdp-sisupport@sdp-si.com
www.sdp-si.com

Stock Drive Products
2101 JERICHO TURNPIKE, NEW HYDE PARK, NY 11040
Phone: (516) 328-3300
Fax: (516) 326-8827
sdp-sisupport@sdp-si.com
www.sdp-si.com
ICD-USA
933 WESTERN DRIVE, INDIANAPOLIS, IN 46241
Phone: (317) 244-9200
Fax: (317) 244-4600
sswaim@icd-usa.com
www.ICD-USA.com

MRD Supply
Motion Industries
Moventas Ltd.
PTD Outlet: Power Transmission Distributors
RUBENA a.s.

SKF USA Inc.
890 FORTY FOOT ROAD, LANSDALE, PA 19446
Phone: (267) 436-6000
www.skf.com

Smalley Steel Ring Company
555 OAKWOOD ROAD, LAKE ZURICH, IL 60047
Phone: (847) 719-5900
Fax: (847) 719-5999
info@smalley.com
www.smalley.com

Wyko - London & Overseas Supplies
Zerelli Technologies Inc

Sensors

Acorn Industrial Services
AeroScout Industrial
Akron Gear and Engineering
Allied Motion
Area Distributors Inc.

Automation Direct
3055 HUTCHINSON ROAD, CUMMING, GA 30040
Phone: (800) 633-0405
Fax: (770) 844-4212
sales@automationdirect.com
www.automationdirect.com

Axu S.r.l.
BDI - Bearing Distributors Inc
BEI Industrial Encoders
Binsfeld Engineering Inc.
Bison Gear and Engineering Corp.
CUI Inc
Conroll Corporation
Custom Sensors & Technologies
Dalton Bearing Service, Inc.
Drive Lines Technologies Ltd
Duff Norton Australia
Dunkermotoren USA Inc.
Electronic Machine Parts
FSD Technologies Inc.
Fapor Automation
Festo Corporation
Fife Corporation
GMB Associates
GP-50 Corporation
Great Northern Products Inc.
HBM
HEIDENHAIN Corporation
HPB Motion Control Co. Ltd.
IBT, Inc

ICD-USA
933 WESTERN DRIVE, INDIANAPOLIS, IN 46241
Phone: (317) 244-9200
Fax: (317) 244-4600
sswaim@icd-usa.com
www.ICD-USA.com

Industrial Clutch Parts Ltd.
Intellidrive, Inc
InvenSense
JVL Industrie Elektronik A/S
K+S Services
Kavlico Corporation
Magnetrol, Inc.
Marshall Wolf Automation Inc.
Maxon Precision Motors Inc
Mayr Corporation

Micron Inc.
Midwest Motion Products
Motion Industries
Norwin Electronics Limited
Novotec Argentina SRL
Pi (Physik Instrumente) L.P. Piezo Actuator Nano Fortescap
Potomac Electric
Prestipcor
Rdf Corporation
Rockwell Automation
Rowland Co., The

Schenck Trebel Corporation
Sensor Developments, Inc
Sensor Products Inc.
Sensor Technology Ltd
Sinotech
Source Engineering Inc.
Stellar Technology, Inc.
Tef - Cap Industries
Transply Inc.
Wyko - London & Overseas Supplies
Xtek, Inc.

Software

Excel Gear, Inc.
11865 MAIN STREET, ROSCOE, IL 61073
Phone: 815-623-3414
Fax: 815-623-3314
chinl@excelgear.com
www.excelgear.com

Involute Simulation Software Inc.
Mark Elektris
ZRIME
Pre-Tension Thrust Bearings

THE QUESTION

What is the recommended method of gripping a spinning shaft (with up to 130 hp of rotational energy) to install pre-tension thrust bearings and conventional thrust bearings (load = hundreds of pounds) when the shaft cannot have any high points because it must pass through an area of tight clearances to assemble? Will snap rings still withstand the harsh vibration of this environment?

Expert response provided by Norm Parker, bearing technical specialist for the driveline division at GM Milford (MI) Proving Grounds

Despite their unassuming demeanor, retaining rings are big business. Their relatively easy production — in addition to their massive global demand — make for an attractive market for many small manufacturers.

Retaining rings come in just about every shape and size imaginable, but we can break them into two main groups: internal and external.

Internal rings are installed on an internal housing bore; these are frequently used to retain a seal or bearing in a housing.

External rings — or rings that install on an outer diameter — are commonly used on shafts. The primary function of this style is to locate bearings, gears or other components on a rotating shaft. These are available in radial and axial installation styles, often referred to as “C” clips.

Retaining rings are available for just about every duty cycle needed — from lightweight retaining rings to rings that can hold several hundred thousand pounds of axial load.

The two main considerations in designing for a loaded retaining ring is the load capability of the retaining ring and the load capability of the groove the ring will be located in. Often, the groove is the weak point in the system.

All of the recommended groove dimensions and tolerancing will be listed for every snap ring in any basic catalog.

While all of the dimensions will be listed in the catalog for every retaining ring, it is often useful to do a little work up front to make some loose determination on what size ranges you will be looking at. The equations for ring shear and groove deformation can literally be done in a few minutes.

Based on the magnitude of load and precision needed, a wide range of thicknesses, precision and styles are available. However, many heavy-duty applications supporting full gear loads, clutch reactions, wheel ends, primary drive shafts, and many others use retaining rings in situations where solid shoulders on shafts and housings are not practical or feasible.

As a GM bearing technical specialist, Norm Parker is tasked with testing theoretical models in the real world, in real time. In keeping with his strong academic background, Parker has also developed a keen interest in the commercial and engineering aspects of the bearing industry. Parker plans to continue expanding his expertise and providing substantial personal contributions to bearing technology through metallurgy, design and processing.
Hungry for More?

Everything you need if you buy gears, bearings, motors, couplings and clutches.

Power Transmission Engineering

- Product and Industry News Updated Daily
- Directory of Mechanical Power Transmission Suppliers
- Exclusive online content in our e-mail newsletters
- Back Issues and Article Archive
- Calendar of Upcoming Events for power transmission professionals

FREE SUBSCRIPTION!

www.powertransmission.com
The Applications of Bevel Gears

Dr. Hermann J. Stadtfeld

EDITORS’ NOTE: “The Applications of Bevel Gears” is the excerpted third chapter of Dr. Hermann Stadtfeld’s latest book — Gleason Bevel Gear Technology (The Gleason Works, Rochester, New York, USA; All rights reserved. 2014; ISBN 978-0-615-96492-8.), which appears here unabridged through the kind graces of Dr. Stadtfeld and Gleason Corp. Future installments will appear exclusively in Power Transmission Engineering and Gear Technology magazine over the next 12 to 18 months.

A Word From the Author
Much has occurred in our industry over the past 10 to 15 years. A singular example is the heightened complexity — and opportunity — that now exists in making “best choices” for optimal transmission elements.

Indeed — 21st Century gear technology not only offers methods for the calculation and manufacture of classical bevel and hypoid gears; it also now presents a variety of possibilities for the three-dimensional transmission of power via gear types that — once-upon-a-time — could only be manufactured on special machines with exotic, expensive tools.

This book was written and is intended for specialists in Planning, Engineering, Gear Design and Manufacturing. It also serves to help meet the technical information needs of those researchers, scientists and students who deal with the theory and practice of bevel gears and other angular gear systems on a regular basis.

What’s more, Gleason Bevel Gear Technology is the first multi-translated textbook available worldwide that goes beyond explicating the abovementioned methods. It also imparts practical suggestions for their application.

The basics-oriented, introductory chapters of this book guide both engineers and students with no gear experience in an easy, reader-friendly way through the basics of modern cylindrical and bevel gear technology. A vector math is introduced that enables every gear specialist to create an Excel spreadsheet and conduct their own experiments in order to gain a better understanding of the complex bevel gear geometry.

It must be noted and acknowledged that The Gear Praxis — published by Karl Friedrich Keck in 1958 — is the inspiration for this book; it describes, in comprehensive detail, bevel gear technology from a mid-20th-Century perspective. Indeed, The Gear Praxis in turn inspired me to write this book, addressing all aspects of the state of actual bevel gear technology — but with an early 21st Century perspective.

Introduction
An introduction to gear theory and the fundamental, gear-mathematical explanations required to understand the geometry of bevel gears has been provided in the preceding chapters. Thus informed, Chapter 3 will introduce examples of everyday applications in the industry that serve to establish the basis for the practical-oriented chapters to come. Similar to cylindrical gears — used to reduce the RPM of a prime mover and to bridge the distance between gear shafts (parallel axes) — bevel gears are also used to reduce input RPM and to transmit motion between two axes that include an angle which can be not just 90°. This physical property of bevel gears allows the orientation between input and output shaft to be under almost any angle. The results translate to design solutions for industrial gear boxes, vehicles and aircrafts which are — due to their use of bevel gears — less complex and best-performing in their function.

Automotive
Luxury-market automobiles have optimal traction due to sophisticated weight distribution design and a “pushing” — rather than “pulling” — propulsion. A longitudinally installed engine drives via manual or automatic transmission a propeller shaft whose rotation is re-directed in the direction of the driving rear wheels by a bevel gearset with pinion shaft offset; i.e. — a hypoid gearset. In addition to enhanced...
weight distribution and ideal vehicle handling, the common, disturbing tilt motion and “torque steer” — as in cases of fast gas pedal actuation — are eliminated. While it is more cost-effective to manufacture front-wheel-drive vehicles with “east/west-oriented” engines, these vehicles present for the operator a combination of disadvantages which include, along with handling, higher fuel consumption.

The cross-section of a typical passenger car rear-axle drive unit is shown in Figure 1. The input shaft offset positions the pinion below the ring gear axis; the input is on the right side and comes from the propeller shaft. Both flanges in front of and behind the ring gear will be connected to the rear wheels with driveshafts. The differential carrier with four straight bevel gears is located inside the ring gear. The two differential gears, which are on the ring gear axis, are rigidly connected to the drive flanges. The two radially oriented differential gears are connected with center pins to the differential carrier on which the ring is rigidly bolted. This configuration enables different RPM of the two driving wheels — while the vehicle is negotiating curves, for example — where the wheel towards the inside of the curve requires a lower number of revolutions than the outside wheel. (Fig. 2 shows a luxury-class vehicle with a longitudinally oriented combustion engine and driven rear axle. This concept is used by automobile manufacturers worldwide on luxury-class vehicles that feature one driven axle.)

Maximum traction is achieved in every vehicle if all wheels are driven; i.e. — all-wheel-drive (AWD) automobiles. Figure 3 shows the drive units of a vehicle with a longitudinally oriented engine and a transmission with a propeller shaft connection to the rear axle. In addition, a transfer case is mounted to the transmission exit that transfers rotation from the transmission exit to the front axle drive. Typically, transfer cases feature mechanical and electromechanical components that allow for differences in RPM and load between the front and rear axle. This is required in order to accommodate a variance in slippage between front and rear axle without winding up the geartrain, as well as the transmission of different torques to the front and rear axle. Eighty percent of the bevel gears in passenger cars are ground, while the remaining 20% are lapped.

Light and Heavy Trucks

Starting with light trucks, those with one-ton payloads are usually driven by one rear axle — with one bevel gearset in each axle unit. For both light and heavy trucks, the propulsion via the rear axle is considered the standard solution, while all-wheel-drive solutions are optionally available. Commercial trucks use rigid-beam-style axles, where the central transmission housing is welded to the axle tubes. The beam-style axles carry the brake mechanism in the wheel area and are connected to the truck frame with control arms. The driveshafts and their bearings are located within the axle tubes. The driveshafts have at their end, where they protrude beyond the tubes, flanges with the wheel interface. This simple design — as it is applied to trucks — shows no disadvantages. To the contrary, it is a solution that even offers good off-road capabilities.

Figure 4 shows a pick-up truck with 2.5-ton payload and a rigid-driven rear axle; the vehicle in Figure 5 is an AWD sport utility vehicle.
utility vehicle (SUV). Of additional interest is that even this mixture between light truck and station wagon is mostly equipped with a beam-style rear axle, and a driven, beam-style steering axle in the front.

The tractor of the Class 8 semi-truck in Figure 6 has under the trailer pivot a driven- tandem axle; the tandem axle consists of two independent, frame-connected, beam-style axles. The first is connected to the transmission and engine with a propeller shaft, while the second axle is connected with a short propeller shaft to a transfer case located in the housing of the first axle. The transfer case has a fixed ratio that precludes slippage between the axles.

Eighty percent of the bevel gears in commercial trucks are lapped after heat treatment as a hard finishing process, while 20% are ground.

Railroad Drives

Railroad engines powered with electric motors or diesel engines feature large, longitudinally oriented prime movers whose rotation and torque are transmitted to the wheel axles with driveshafts and bevel gear transmissions.

With trolleys, subway cars or commuter trains, smaller individual, electric motors are dedicated to each axle. Also, the longitudinal motor orientation is preferred and a redirection of the motion is realized by bevel gear transmissions (Fig. 7). The bevel gearsets are ground or skived after heat treatment.

Construction Equipment

Earth-moving equipment uses bevel gears for auxiliary purposes, as well as for their propulsion. The backhoe shown in Figure 8 is very similar to a farm tractor in its basic design concept. Backhoes feature a driven, beam-style rear axle with a spiral bevel gearset (no hypoid offset). Engine, shift trans-
mission and axle drive are
connected in these tractors
to one solid unit.

The excavator in Figure 9
(top) has four driven, dual
wheels. Engine and trans-
mission are located in the
upper-rotatable operator
cabin. The propulsion of
the wheels is produced from
the transmission via a bevel gear-
set to a vertical shaft through
the center of the cabin pivot
point; it is then redirected be-
neath the suspension frame
with a second bevel gearset
in the horizontal length di-
rection. Two propeller shafts
transmit the drive motion
to each of the front and rear
beam axles. The two beam
axles also include bevel gear-
sets for the motion redirec-
tion to the wheel axles.

Modern scrapers, i.e. — bulldozers (Fig. 9, bottom) — ap-
ply hydrostatic-powered track chains; bevel gears are used
only for the actuation of auxiliary units. Bevel gears in con-
struction equipment are — depending upon their manufac-
ture — either lapped, ground, skived or built — without any
hard finishing operation after heat treatment.

Aviation
Jet airplane engines have all moving engine parts oriented
around the main shaft. The connection of the turbine rotors
is established with Curvic couplings. Auxiliary units require
a power take-off from the main shaft, which is accomplished
via bevel gear transmissions (Fig. 10).

Helicopters use internal combustion, or jet, engines. Mod-
ern jet engines for airplanes are designed as a turbofan,
where the rotational power of the main shaft — which is gen-
erated behind the combustion chambers — is partially used
to compress the air that flows into the combustion chambers,
and partially to rotate one or several fans. This generates ad-
ditional thrust to the thrust already generated at the engine
exit. Helicopters for civil applications generate lift and thrust
forces solely with the main rotor, which is why helicopter jet
engines are designed to deliver all output energy on the main
shaft, which in turn is used to power the main rotor instead of
a turbofan. In both cases, piston or jet engine, there is a nec-
essary redirection of the rotation from the near-horizontally
oriented output shafts to the vertical direction of the main ro-
tor axis.

The high, maximal RPM of 18,000 in cases of one or two tur-
bines is reduced with a first bevel gearset by a factor of three,
and further reduced by a factor of four-to-eight with the main
rotor drive. The main rotor drive has a large ring gear — 80 to
120 teeth — that is driven by one or two pinions (depending
on the number of engines). Additional pinions are grouped
around the circumference of the ring gear that take off re-
direct and power to auxiliary units such as a hydraulic pump
and electrical generator. Also, energy for the tail rotor is
branched off the main rotor ring gear by an additional pin-
on. At the tail rotor, another bevel gearset is utilized in order
to redirect the rotation of the driveshaft running through the
helicopter tail into the direction of the tail rotor axis.

Helicopter transmissions total about 10 bevel pinions and
four ring gears — some of which have, for example, a hypoid
offset in order to account for the asymmetric orientation of
the tail rotor and its driveshaft. Because of space constraints
and tight component packaging, almost all bevel gearsets are
realized with shaft angles less than 90°. Helicopter transmis-
sions are the most sophisticated and complex application for
bevel gear systems. All aerospace power transmissions re-
quire ground flank surfaces and ground root fillets after heat
treatment (Fig. 11).
Industrial Gearboxes

Industrial gearboxes are used in machines and equipment across many different industries. Redirection of motion is as often required as the reduction of RPM between parallel axes. A typical industrial gearbox similar in appearance to what is used to actuate escalators, assembly line belts, lifting devices, and special machines is shown (Fig. 12, left). The efficiency of these gearboxes becomes increasingly important, as many of them have a 24/7 duty cycle. Industrial gearboxes are available with ring gear diameters ranging from below 50 mm up to diameters of 2,000 mm — due to their many different industrial applications. In Figure 12 (right) an angular transmission that drives a larger pump with a ring gear diameter of 1,000 mm is shown. Industrial gearboxes are hard-finished with skiving or grinding after their heat treatment.

Marine Transmissions

Stern drives (more commonly known as “outboard motors”) require two bevel gearsets between the motor and propeller. The high-power unit (Fig. 13) has two opposite hand propellers that rotate in opposite directions (twin-prop). The drivetrain of this unit is equipped with CONIFLEX straight bevel gears that are not hard-finished after heat treatment. Straight bevel gears — with optimized root fillet and a strength-increasing shot peening treatment — show for this particular application a higher root bending strength than spiral bevel gears.

Oceangoing vessels with a central, inboard motor utilize bevel gears to run the propeller shafts with changing angles along the hull to the ship's stern. A power split onto two stern propellers — typical in many large ships — is handled by bevel gearsets with low shaft angles between 5° and 20°.

Thrusters (Fig. 14) have been used for many decades in ocean exploration platforms such as those used for pumping crude oil. On each of the four corners of such platforms a thruster with a propeller diameter of several meters is attached. The thrusters are used to maneuver the platform from shore to its geographical ocean location; once at the service location, they help maintain platform stability.

A thruster’s base construction is reminiscent of a gigantic stern drive. Today’s smaller-size thrusters are used to propel ships; they afford excellent maneuverability — which is why they are used in pilot boats and ice breakers, as well as in ships requiring nimble harbor maneuverability. Thrusters can also be attached to a vessel as a module; this eases or eliminates many of the existing restrictions in ship design that can be traced to the conventional “inboard” drivetrain and its location of the motors and propeller shafts.

Thrusters use two bevel gearsets (Fig. 14); depending on the application, the ring gear diameters can vary between 600 mm and 2,500 mm. Ninety percent of the bevel gears for the propulsion of ships are skived, while 10% are ground as a hard finishing operation.
Special Applications

Large bevel gears — not hard-finished after heat treatment — are found in equipment and machines for the surface mining of coal and ore (fracking), as well as for stone crushing and stone mills. In some cases these large bevel gears are assembled without any post-cutting heat treatment; in others, a flame or induction hardening is performed. Figure 15 shows an oil drilling platform; the rotation of a horizontally oriented, internal combustion engine is re-directed in the orientation of the drilling rod. This application requires the transmission of high torque with rotary impulses generated by the stone-drilling action and the elasticity of the long rod. The bevel gearset must have a high degree of toughness in order to avoid tooth fracture due to, for example, a locking drill. To fulfill the requirements above, the bevel gears are surface-hardened and, because there is a ring gear diameter of about 1,500 mm in this unit, the bevel gears are hard-finished by skiving, as grinding is usually only recommended for diameters of up to 800 mm.

Sources. The reproduction of photographs in this chapter that were not available as press material has been granted to the author and publisher by the owner by written permission. Photo material of the following companies has been used: Daimler AG; ZF Friedrichshafen AG; General Motors Corporation; Chrysler Group LLC; Liebherr; AgustaWestland (a FINMECCANICA Company); MAAG Pumpen AG; Konrad Marine; and Rolls Royce Marine.

Dr. Hermann J. Stadtfeld received in 1978 his B.S. and in 1982 his M.S. in mechanical engineering at the Technical University in Aachen, Germany; upon receiving his Doctorate, he remained as a research scientist at the University’s Machine Tool Laboratory. In 1987, he accepted the position of head of engineering and R&D of the Bevel Gear Machine Tool Division of Oerlikon Buehrle AG in Zurich and, in 1992, returned to academia as visiting professor at the Rochester Institute of Technology. Dr. Stadtfeld returned to the commercial workplace in 1994 — joining The Gleason Works — also in Rochester — first as director of R&D, and, in 1996, as vice president R&D. During a three-year hiatus (2002-2005) from Gleason, he established a gear research company in Germany while simultaneously accepting a professorship to teach gear technology courses at the University of Ilmenau. Stadtfeld subsequently returned to the Gleason Corporation in 2005, where he currently holds the position of vice president, bevel gear technology and R&D. A prolific author (and frequent contributor to Gear Technology), Dr. Stadtfeld has published more than 200 technical papers and 10 books on bevel gear technology; he also controls more than 50 international patents on gear design, gear process, tools and machinery.
Four types of gear devices with great transmission ratios (simply called great ratio gears or GRGs) are discussed in this paper. They are strain wave gearing devices (SWGs), trochoidal gear reducers (TGRs), hypocyclic gear reducers (HGRs) and James Ferguson-type planetary drives (JFDs). The structures, advantages and basic performances of these four devices are compared. The latest design and strength analysis methods are also introduced. To conclude, the future tendencies of GRGs are predicted.

Introduction
In the latter period of the 20th century, factory automation was developed very rapidly in order to satisfy the requirements of mass production and reduce product cost. Industrial robots were successfully developed — mainly in Japan, Germany and Switzerland — for the express purpose of factory automation. Then GRGs — such as the SWGs and the TGRs — found applications in industry as robot joints. This was the beginning of GRGs being widely used in industry. Today, countless SWGs and TGRs are made every day, and they are not used only in robots, but also in many other high-performance machines such as semiconductor devices, aircraft and space-exploring machines, as well as critical power transmission devices.

Yet, after much R&D in making high-performance SWGs and TGRs a reality, design and strength calculation problems of the GRG remain.

This paper introduces the latest results of an extended period of comprehensive research on the design and strength calculation methods of the SWGs, TGRs, HGRs and JFDs. First, the structures, advantages and basic performance of the four GRGs are compared. Next, design and strength analysis methods developed for these four GRGs are introduced. And last, future tendencies are predicted for GRGs.

Structures, Advantages and Basic Performances of the GRGs
An SWG is also known as a harmonic drive device; it was invented by Muss-er (Ref. 1) in 1957. Figure 1 is a structural example of a cup-type SWG. As shown there, the SWG mainly consists of a thin-rimmed flex-spline (FS) spur gear; an internal spur gear, also known as a circular spline (CS); an elliptical-shaped cam, or wave generator (WG); and a flexible ball bearing (FB) that can be deformed freely by the WG.

Transmission ratio of the SWG — when the CS is fixed and the FS is used as output — can be calculated by \((Z_1/N)\). Here, \(Z_1\) is the tooth number of the FS; \(N\) is lobes of the WG. Usually, the WG assumes the shape of an ellipsoid; therefore \(N=2\) at this time. If \(Z_1\) is substantial, great transmission ratio can be available. Now, the SWG with transmission ratios among 30 and 200 are made as mass production products by makers.

Beyond the great ratio, benefits such as light weight, small size, very slight backlash and extremely high transmission accuracy are other advantages of this device. Also, the SWG can be made...
very small—like a micro-machine. With these advantages, the SWG has found wide applications in industry, as well as in humanoid robots in recent years.

Trochoidal gear reducer (TGR). TGR is also known as a cycloidal gear reducer. It was invented by Lorenz Brarren, a German engineer, in 1927 (Fig. 2). As shown there, an external spur gear with trochoidal profile—AKA *trochoidal gear*—is used. Many pins are used as teeth of an internal—or *pin*—gear. Like the SWG, an eccentric cam—or crackshaft—is used to drive the trochoi- dal gear to engage with the pin gear. Transmission ratio of the TGR can be calculated by \(Z_2/(Z_2-Z_1) \) when the pin gear is used as output. Here, \(Z_1 \) and \(Z_2 \) are tooth numbers of the external and internal gears, respectively. Usually, \((Z_2-Z_1)=1 \) and then the transmission ratio becomes \(Z_2 \). So, if \(Z_1 \) is made very large, extreme transmission ratio can be made available.

In addition to great transmission ratio, the TGR is also characterized by great torsional rigidity, high load-carrying and overloading capacities. This is because the number of contact teeth can be increased when larger torque occurs. The TGR also has high efficiency and strong tooth root strength because of the trochoidal profile. It is well known that only rolling contact (no sliding) exists between the contact teeth. But now the TGR can be made with very small backlash, lost motion and transmission errors.

Hypocyclic gear reducer (HGR). HGR is a planetary drive with small tooth number difference. Figure 3 is a structural example of the HGR. In Figure 3 it is seen that the kinematics of the HGR is exactly the same as for the TGR, with only difference being the tooth profile curves. When involute curves are used as tooth profiles of the external and internal gears, the TGR becomes the HGR. The HGR can be made simpler than the TRG. This is because it is simpler to make the involute teeth than to make the trochooidal teeth. Transmission ratio of the HGR can be calculated in the same way as the TGR. The HGR has lower load-carrying capacity than the TGR. This is because the number of contact teeth of the HGR is less than that of the TGR due to use of the involute profile. Of course, the torsional rigidity and overloading ability of the HGR are also lower than the TGR; perhaps this is the main reason why the HGR cannot be used widely in industry as is the TGR. It is presently a research subject of the author’s as to how to increase the number of contact teeth of the HGR by way of a suitable involute tooth profile.

James Ferguson-type planetary drive (JFD). A James Ferguson mechanism (Ref. 2) is one in which one gear engages with the other two or three gears on the same tooth surface. This mechanism was also used in planetary drives for achieving great transmission ratio and compact size design (Ref. 3). The planetary drive that uses the James Ferguson mechanism is called the James Ferguson-type planetary drive (JFD) in this context (Fig. 4; Ref. 3). In Figure 4, \(Z_1 \), \(Z_2 \) and \(Z_3 \) are tooth numbers of the sun gear and the planetary gear, respectively; \(Z_1 \) and \(Z_3 \) are tooth numbers of two internal gears. As shown in Figure 4, the planetary gear \(Z_2 \) engages with two internal gears \((Z_1 \) and \(Z_3 \)) on the same tooth surface. This is the main difference between a typical planetary drive and a JFD. In most cases a transmission ratio of a planetary drive cannot exceed 14; but the transmission ratio of the JFD can be greater than 100. The transmission ratio of the JFD can be calculated by \((1+Z_2/Z_1) / (1−Z_2/Z_3) \). Here, \(Z_1 \) is greater than \(Z_2 \) and \((Z_2−Z_1) \) is equal to the number of the planetary gears used in the JFD.

Tooth interference must be checked twice, since two internal gears are used in the JFD. In order to avoid tooth interference, \(Z_4 \), \(Z_5 \), \(Z_6 \), and \(Z_7 \) cannot be given freely as desired. So, too, transmission ratio of the JFD cannot be obtained freely as desired. This is the first disadvantage of the JFD. The second disadvantage of the JFD is lower load-carrying capacity. It shall be introduced later that tooth side-heavier contact occurred in the JFD due to a face width discrepancy between the planetary gears and internal gears. It, too, is now a continuing research project of the author on how to reduce the tooth side-heavier contact through considering a new structure, or by performing tooth lead modifications.
The Latest Design and Strength Analysis Technologies for GRG

Design and strength analysis methods of the four GRGs differ from those of usual gears. For the latter, tooth contact and bending strength calculations are the main items in strength analyses, while for the GRG, tooth strength as well as bearing strength must be analyzed simultaneously. This is because contact fatigue failures of the bearings in the GRGs are also the main failures. In order to solve strength calculation problems of the GRG, special finite element methods have been developed to do contact analyses of these devices separately, based on long-term study by the author. Loads distributed on teeth, bearing balls and rollers are analyzed — initially through contact analysis with the developed FEM. Then tooth and bearing strength are evaluated using FEM and Hertz’s formula once the loads on teeth, bearing balls and rollers become known. These main procedures are introduced in the following sections.

Strain wave gearing device (SWG).
In the mass production products of the SWG, three kinds of curves are now used as tooth profiles; i.e. — straight line, involute, and arc profiles, respectively. Tooth profile design of the SWG is a difficult thing for designers. This is because tooth profile design of the SWG must take the cam shape of the WG into account since cam shape has direct effects on tooth engagement. It requires very sophisticated technology in order to be able to design a suitable tooth profile with high performances for the SWG. Special software has been developed to do tooth profile design and geometric dimension calculations of the SWG, based on more than 20 years’ experience of the author with the SWG. Figure 5 is an example of applications of the developed software. This software was developed to run in the AutoCAD environment using AutoCAD VBA language. The straight line, involute, and arc curves are programmed in the software. When the gearing parameters are input in the software, tooth profile design and geometric dimension calculations can be conducted automatically with the help of this software. The 2D drawings (Fig. 5 (a)) can be drawn automatically on the drawing template of AutoCAD in a few seconds. 3D drawings (Fig. 1(b)) can also be executed via 3D commands of the AutoCAD or SolidWorks software based on the 2D drawings.

Strength calculations of the SWG are another difficult hurdle for designers. This is because there is not yet available a simple method to do strength calcula-
tions of the SWG. To solve this problem the author in 1987 began seeking a suitable method for strength calculations of the SWG. A unique FEM for the SWG was eventually developed after a very long period of research. Today it is possible to calculate the following strength items of the SWG with the developed FEM software:
1. Contact strength of the contact teeth
2. Bending strength of FS tooth roots
3. Bending strength of FS structure (tube and diaphragm)
4. Contact strength of the FB.
(Except for these four items, buckling strength calculation of FS tube must also be included in the design procedures.)

Figure 6 is a 3D FEM model used for contact analysis of a silk-hat-type of the SWG (Ref. 4). Figure 7 is the root bending stresses of the FS teeth calculated by the developed FEM software. Figure 8 is the calculated maximum contact stresses on FS tooth surfaces. From Figure 7 it is found that the root bending stresses of the FS teeth are affected by the ball positions of the FB. Figure 8 indicates that the tooth contact pattern of the SWG is much more complex than that of usual gears.

Trochoidal gear reducer (TGR). Design software has been developed also for the TGR in an AutoCAD surrounding like the SWG (Fig. 9). With this software TGR can be designed very quickly and automatically. The 2D drawings of the designed TGR can be drawn automatically on the drawing template of AutoCAD (Fig. 2 (a)) and the 3D drawing can be made as shown (Fig. 2 (b)) using 3D commands of AutoCAD based on the 2D drawings.

Yet another difficulty is for designers to perform strength calculations of the TGR. This is because it is still an unsolved problem to do three-dimensional contact analyses of the loads on teeth, bushes and rollers of the TGR (Fig. 2(a)), although many efforts have been made to solve this problem. It was started in 1994 by the author to develop a method and software that can do strength analyses of the TGR using 2D FEM. Now it is indeed possible to calculate the contact loads and stresses on teeth, bushes and rollers of the TGR with the developed 2D FEM software.

Figure 10 is the 2D FEM model used for contact analysis of the TGR with the parameters indicated in Figure 9. Figures 11–13 are calculated contact loads and stresses on teeth, bushes and rollers when a torque load is applied. Numbers of the teeth, bushes and rollers used in Figures 11–13 are also indicated in Figure 10. With the calculated contact stresses, the contact strength of the teeth, bushes and rollers can be
evaluated two-dimensionally. Figure 14 is the calculated Von Mises stresses on the trochoidal gear; it can be used to evaluate the bending strength of the trochoidal gear—but it is rarely used for the TGR.

Hypocyclic gear reducer (HGR). Geometric design and strength calculation of the HGR also differ from usual gear devices. In order to be able to conduct strength calculations of the HGR, a special method used for contact analysis of the HGR has been developed using FEM (Ref. 5). Figure 15 is the mechanics model used for contact analysis of the HGR (Fig. 3). With this model and the developed FEM, loads on contact teeth, pins and center rollers were analyzed (Ref. 5) and are given in Figure 16, where it is found that only four pairs of teeth (tooth pairs 5, 6, 7 and 8 as shown in Figs. 17 and 15) are in contact. This means that the contact tooth number of the HGR is much less than that of the TGR. As shown in Figure 11 there are 17 teeth in contact—from No. 2 to 18—for the TGR. It also means that tooth profile has a significant effect on contact tooth number. Though the HGR can be made easily because of using the involute profile, since contact teeth are much less than that of the TGR, the load-carrying capacity of the HGR becomes much lower than that of the TGR. This may be why the HGR cannot find wider applications in industry. For now, it is a research sub-
ject for the author on how to increase the contact tooth number of the HGR; a new tooth profile is under study.

James Ferguson-type planetary drive (JFD). One of structural differences between the JFD and a usual planetary drive is the face width difference of the contact teeth between the planetary gears and the internal gears. In the case of JFD, face width of the planetary gears is about twice that of the internal gears (Fig. 4). This means that only half-a-length of the face width of the planetary gears is used to contact with the entire length of the face width of the internal gears (Z₃ or Z₄). This tooth contact on different face widths makes it difficult to do bending and contact strength calculations of the contact teeth using the methods available for usual gears. So, a 3D FEM is developed to do loaded tooth contact analysis of the contact teeth with different face widths.

Figure 18 is a structural example of the JFD designed by the author based on the basic structure shown in Figure 4. In Figure 18, Z₁, Z₂, Z₃, and Z₄ are tooth numbers of the sun gear, planetary gear, and internal gears (left-side and right-side), as indicated in Figure 4. Figure 19 is an FEM model used for loaded tooth contact analysis of the planetary gear Z₂ with the internal gear Z₃. As we see in Figure 19, the internal gear teeth are in contact with the right half-length of the planetary gear teeth.

Figure 20 shows the calculated contact stresses distributed on the tooth surface of the internal gear Z₃. Figure 21 is the calculated root bending stresses of the planetary gear Z₂ distributed along the longitude. From Figure 20 it is determined that contact stresses are not uniformly distributed along the longitude of the internal gear teeth; i.e. — the side-heavier contact occurred on the right side of the contact teeth. In Figure 21 it is also seen that tooth root bending stresses are not uniformly distributed along the longitude of the planetary gear tooth; the left half-length of the planetary gear tooth has larger root stress distribution than the right half-length of the teeth. Although the right half-length of the face width is not used to contact with the internal gear teeth, the right half-length of the tooth also has smaller root stresses. Figures 20 and 21 indicate that the contact and
bending stresses of a pair of gears with different face widths are different from that of a pair of normal use gears with equal face widths. It is now another re-search project for the author on how to reduce the side-heavier contact of a pair of gears with different face widths through lead modification on the internal gear Z₂.

Future Tendencies

A common gearing theory. In the future it will become necessary to build a common gearing theory for the SWGs, TGRs and HGRs, since there is a common point existing in all three devices that use eccentric movement to realize the great transmission ratios, as well as having very similar tooth engagement movements.

To date, gearing principles for a pair of conventional gears without eccentric movements (for example: a pair of spur gears or helical gears) have been well studied, but the same cannot be said for the gearing principles of the GRG with eccentric movements. The gearing theories of the SWG and TGR were built separately, while the gearing theory of the HGR has yet to be built. Plainly, it remains a difficult task to design a new type of tooth profile for the HGR. A most worthwhile future goal is to build a common gearing theory for these three GRGs. It may yet be proven that basic performances and load-carrying capacities of the three GRGs can be greatly improved when a new type of tooth profile is developed with the help of common gearing theory.

Lightweight, small size and high-torque transmission. In the last century, much effort was exerted in making the GRG as lightweight, small-sized and high in load-carrying capacity as possible, primarily because these items were required by users as product specifications and these items reflect the competitiveness of the makers’ products. In order to create lightweight, small-size, high-torque transmission, many studies were conducted on gear design, materials, machining accuracy and heat treatment methods. No doubt, these studies markedly improved performance of the GRG and also increased strength and competitiveness of the makers’ products. Some makers were very successful in their business and able to compete in very large markets through these efforts. Per the industry experiences of the author, lightweight, small-size and high-torque transmission design are also important for the GRG in the future, as market demand will ensure their importance for quite a long time.

High transmission ratios. Prior to 2000, it was well-accepted to use high-speed, small-size motors in combination with the GRG to transmit great torque in industry robots and other machines. This idea is also successful in humanoid robots (for an example, Honda’s ASIMO), NASA’s Mars Rover and many other new machines. Now this idea is accepted by many engineers as a general design thought and used widely in new machine development. A familiar nickname—“Gearhead”—is also given to this idea by engineers, and is used very often in factories. Today’s “Gearheads” often have transmission ratios among 30 – 200. In the future, much higher transmission ratios—among 200 – 400, for example—may well be needed in the marketplace. This would create new business opportunities in the future to design and make the much higher transmission ratio “Gearheads.”

High performances. Also prior to 2000 much effort was expended in improving the performance of the GRG in order to satisfy market requirements. Today it is possible to make very high-performance GRGs with low transmission errors, low vibration, low noise, high transmission efficiency, and high strength with the help of gear technology advances in design, FEM analysis, materials, heat treatment and machining accuracy. Per the author’s industry experience, it can be predicted that even much higher GRG performance will be pursued by users in the future.

Conclusions

- Structures, advantages and basic performance of four types of great transmission ratio gear devices—the strain wave gearing device; trochoidal gear reducer; hypocyclic gear reducer; and James Ferguson-type of planetary drive are introduced and compared.
- The latest design and strength analysis methods of the four great transmission ratio gear devices are introduced.
- Future tendencies of the great transmission ratio gear devices are predicted, based upon the extensive industry experience of the author with great ratio gear devices.

References

2. Ferguson, James. The Description and Use of a New Machine, Called the Mechanical Paradox; Invented by James Ferguson, London, 1764.

For Related Articles Search

• Structures, advantages and basic performance of four types of great transmission ratio gear devices—the strain wave gearing device; trochoidal gear reducer; hypocyclic gear reducer; and James Ferguson-type of planetary drive are introduced and compared.
• The latest design and strength analysis methods of the four great transmission ratio gear devices are introduced.
• Future tendencies of the great transmission ratio gear devices are predicted, based upon the extensive industry experience of the author with great ratio gear devices.

References

2. Ferguson, James. The Description and Use of a New Machine, Called the Mechanical Paradox; Invented by James Ferguson, London, 1764.

Shuting Li is an associate professor at Shimane University in Japan, and an active member of the Administration Committee of the JSME Machine Design & Tribology Division. He graduated in 1986 from the Department of Aircraft Manufacturing at the Northwestern Polytechnical University in China, receiving his Ph.D. from Yamaguchi University (Japan) in 1998. Li has 28 years’ experience in gear research — including 13 years of industry experience. He has authored more than 50 papers on gear research and since 2000 has also served as reviewer for many international journals, including ASME Trans. J. Mech. Des., and Mech. Mach. Theory.
HANNOVER MESSE. Are you ready for the 4th Industrial Revolution?

13 – 17 April 2015
Hannover • Germany
hannovermesse.com

Find out about the factory of the future – and all the latest trends.

Deutsche Messe
Get new technology first

Hannover Fairs USA, Inc • Aryan Zandieh • Tel. +1 773-796-4250 • azandieh@hfusa.com
Finite Element Evaluation of Bearing Instrumentation Method

J. Austin, Dr. David Talbot, Dr. Donald Houser and Dr. Sandeep M. Vijayakar

This paper presents an evaluation of measurements being taken on a 750 kW wind turbine gearbox being tested by the National Renewable Energy Laboratory (NREL). High-speed stage gears and bearings have been identified as critical components of the gearbox; during gearbox testing, these components were instrumented and tests were developed to evaluate loads on high-speed tapered roller bearings (TRBs). In this paper an advanced finite element-based contact modeling procedure has been applied to model the high-speed stage with the bearings fully modeled in order to evaluate strain levels. A major conclusion is that the strains of the slotted grooves are at such a level that they have acceptable signal-to-noise levels. This was verified by the results of the initial experiments presented here.

Introduction

Motivation and gearbox configuration. The National Renewable Energy Laboratory (NREL) has made a commitment to address wind turbine gearbox reliability as part of its research agenda. A gearbox reliability collaborative (GRC) was developed to address major gearbox issues with the goal of increasing the overall reliability of wind turbines. Many gearbox problems may be a result of poor communication and feedback during the design, operation, and maintenance of turbines (Ref. 1). The GRC is aimed at uniting these equally critical elements of the design process and encouraging collaboration and information sharing. A 750 kW turbine design, representative of many turbines currently in service, was selected by a committee of experts and gearbox consultants hired by NREL under the GRC.

The majority of observed failures appears to initiate at bearing locations, and are not a result of gear failures or gear-tooth design deficiencies. The failures appear to initiate at bearing locations and then propagate into other components of the gearbox. During the first iteration of testing there were a number of component failures seen in the gearbox, many of which were attributed to lubricant starvation. Components damaged in this gearbox included the high-speed gearset, sun spline, and planet bearings (Ref.2). The gearbox underwent a redesign and so began a new iteration of testing.

The GRC gearbox is shown in Figure 1; its design is a speed increaser that includes a planetary stage followed by two parallel shaft stages. The gearbox has a power capacity of 750 kW, with an

Figure 1 Exploded view of example gearbox (Ref. 3).

Figure 2 Gearbox bearing locations and nomenclature (Ref. 3).
overall speed increase ratio of 1:81.491. The nominal input speed is 22 rpm, with the output speed at 1,800 rpm. A 323 kN-m input torque is required on the rotor blades to operate the generator at full-rated power.

The following nomenclature will be used throughout the rest of this document when referencing internal components of the gearbox:

“Upwind components” are those located on the entrance side of the stage before power has passed through the gear.

These may also be termed **“rotor side,”** as they are located closer to the rotor.

“Downwind components” are those located on the aft end of the shaft.

Parallel shaft stages are comprised of three separate shafts — each supported by three bearings. The bearing configuration of each shaft consists of a cylindrical roller bearing on the upwind portion of the shaft: (LS-SH-A, IMS-SH-A, HS-SH-A); and a pair of tapered roller bearings (TRBs): (LS-SH-B, IMS-SH-B, HS-SH-B, LS-SH-C, IMS-SH-C, HS-SH-C) on the downwind portion of the shaft. Bearing locations and naming convention are shown (Fig. 2). The subject of this paper will be the high-speed pinion shaft bearings (HS-SH-B, HS-SH-C) that support the upper shaft of Figure 2.

Transmission3D and Calyx. Transmission3D is a linear, finite element (FE) contact analysis program developed by Advanced Numerical Solutions LLC (Ref. 4), specifically designed for the analysis of multi-mesh geared drivetrains. The program empowers the user to model the housing, bearings, shafts, planet carrier, and gears as deformable bodies. Gear microgeometries can be included, as well as assembly and manufacturing errors. Bearings are generated similar to gears, and can include crowning on the rollers and races, as well as clearance and preload.

The greatest benefit of Transmission3D is in the contact algorithm. Gear, bearing, and spline stresses are localized and influenced by microgeometries on the micron scale. Transmission3D uses a unique contact analysis solver — Calyx — that utilizes a hybrid algorithm of finite elements to predict far field displacements, and an elastic half-space model to predict relative displacements local to the contact region.
But in doing so, Calyx does not require a highly refined FE mesh.

High-Speed Shaft Analysis

The high-speed stage gears and bearings are acknowledged to be critical components of the gearbox (Refs. 1–2); there previously had been very little instrumentation of the high-speed shaft, gears, and bearings. During the next phase of testing, this portion of the gearbox was to be instrumented. In this next phase, tests were developed to evaluate the loads on the TRBs (Ref. 6). Gauges were placed in axial grooves machined into the outer race of the TRBs. Each bearing has four axial grooves, with two-gages-per-groove.

There was initial concern as to whether the strain levels would be high enough in the bearing raceways to provide an adequate signal-to-noise ratio. The outer race of the bearing is tapered; the groove geometry was tapered as well, with the intent of maintaining a constant radial thickness of the raceway along the groove.

In this analysis, contact was included in the model at all gear mesh locations and at the high-speed bearings; all other bearings were included as stiffness matrices. The high-speed, intermediate-speed, and low-speed stages are shown in Figure 3. The fully modeled bearings can also be seen, and are shown in detail in Figure 4, which also displays the naming convention.

Model parameters. An analysis was completed with and without the modified race under 100% torque loading conditions. The TRBs were preloaded with 70 micron of negative clearance to accommodate mounting preload and loads due to thermal expansion of the bearing components. The cylindrical roller bearing HS SH A includes 18 micron of diametric clearance. In this opposing TRB configuration, bearing HS SH C will carry the thrust load generated at the high-speed gear mesh, adding to the initial preload of that bearing and relieving the preload from HS SH B. Figure 5 shows the contact pressure distributions on a) HS SH B and b) HS SH C. It can be seen that all of the rollers in HS SH C are in contact; as mentioned previously, this bearing carries the thrust force generated at the gear mesh,
which keeps all rollers under load. HS SH B however, has approximately 30% of the rollers out of contact.

Bearing strain results. Figure 6 displays the numbering convention used for both TRBs. The first roller in each bearing is located at zero degrees—or top-dead-center (TDC) of the bearing—and increases clockwise while looking downwind (from the left, Fig. 2). The hoop strain was extracted around the circumference of the outer raceway (Figs. 7–8). The strain was sampled at two axial locations, i.e.—at 25% and 75% of the axial length of the raceway. The results of this analysis are from one time step and can be viewed as if the race was unwrapped and laid flat on the page. Roller 1 is at TDC (0 degrees). The peaks correspond to roller positions; a peak indicates that a roller was directly under that location and a valley indicates that two rollers are straddling that point. The race with grooves has locations at 0° (Groove A); 90° (Groove B); 180° (Groove C); and 270° (Groove D). Differences in load distribution along the rollers themselves should result in shifts in strain values between the two axial locations, and could be used as an indication of roller load distribution. Figures 9 and 10 illustrate the strains extracted around the circumference of the outer race with the machined grooves; the groove locations are labeled. Table 1 shows the peak-to-peak, predicted strain indicating the strain caused by direct application of load by a passing roller.

Discussion

The grooves, as indicated in Figures 7-10, increased the simulated bearing race strains by as much as 300%. HS SH B had two groove locations that were either very lightly loaded or were outside the load zone completely—i.e., locations b and c—respectively. These locations did not see the same amplification as those located directly in the bearing load zone. In general the groove geometry increased strains by a considerable amount. One detriment to modifying the bearing outer race may be that the roller-to-roller load distribution could be affected by the modification. Figures 11 and 12 show the predicted roller loads of HS SH B and...
HS SH C, respectively. Green-circled data points represent the locations of the outer raceway modifications; these figures show the total load carried by individual rollers for both the modified and unmodified outer raceway cases. Here the roller-to-roller load sharing is predicted to be minimally affected by the addition of compliance through the introduction of outer raceway grooves.

Implementation of Bearing Race Groove

The scheme discussed in this Section 2 has been implemented by the NREL Wind Energy group (Ref.6) and successfully tested. Its final implementation has an adjusted groove geometry that was applied to accommodate manufacturing considerations. Also, the bearing preload that was achieved is unknown, but was most certainly considerably lower than that used in the example for this paper. To demonstrate the fidelity of the signals, Figures 13 and 14 show 0-degree slot strains for HS SH B and HS SH C at 75% axial location, respectively.

Strain caused by the direct application of load by a roller on the outer raceway is represented in Table 2 as the average peak-to-peak-measured strain. As seen in Figure 13, there is quite a bit of variability in strain levels for each different roller passing. This variability is quite repeatable, with roughly every ninth roller passing corresponding to one shaft revolution.

It should be noted here that a torque trace taken from the shaft showed a significant once-per-revolution torque variation that seems to correlate well with the strain variations.

Table 2 shows that HS SH B carries a small amount of load in comparison to HS SH C. As noted earlier — and predicted in Section 2 — this is due to the fact that the axial gear mesh load is supported by HS SH C, while the preload of HS SH B is reduced by this loading. In fact, for the 75% axial position of bearing HS SH B, it appears that virtually no load is carried by this end of the roller at positions C and D (Table 2). Because the analysis presented in Section 2 was performed assuming preload on this set of bearings, the simulations indicate more load carried by each of the bearings.
Conclusion

Here a full transmission model of a 750 kW wind turbine gearbox was modified in order to assess bearing raceway modifications for measurement of strain in order to predict bearing load sharing and load distribution.

It is clearly apparent that the modification of the tapered roller bearing outer raceways — through the introduction of a groove — greatly increased the predicted strain in the raceway.

Simulations predicted that appreciable strain signals could be produced by introducing such grooves, and measurements show that to be true.

Improved strain predictions to be directly compared to the experiments may be attained by using exact groove geometries manufactured, as well as the known, bearing preload levels used in the experiments.

Acknowledgments. This work was partially funded by a grant (GRT0023734/60030753) from the National Renewable Energy Laboratory (NREL). We would like to thank Jon Keller and Yi Guo of NREL for providing us with the test data, as well as the sponsors of the Gear and Power Transmission Research Laboratory for providing funding for this research.

References

Table 2 Measured peak-to-peak strains at groove locations with the modified bearing race.

<table>
<thead>
<tr>
<th>Location</th>
<th>HS SH B (micro-strain)</th>
<th>HS SH C (micro-strain)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Groove</td>
<td>With Groove</td>
</tr>
<tr>
<td>A</td>
<td>47</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>74</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>98</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>65</td>
</tr>
</tbody>
</table>

For Related Articles Search at www.powertransmission.com

Simulation

Dr. Sandeep Vijayakar is founder and president of Advanced Numerical Solutions (ANSOL). He received his PhD from The Ohio State University, where he now serves as an adjunct faculty member. His company — ANSOL, specializing in the finite element contact analysis of gears. Vijayakar is credited with authoring the Calyx computer program, designed for the static and dynamic analysis of geared systems.

Dr. Donald Houser is Professor Emeritus of Mechanical Engineering and founder of the Gear Dynamics and Gear Noise Research Laboratory (GearLab) at Ohio State University. Dedicating his efforts and knowledge to gear dynamics research for over 45 years, he has also consulted for numerous companies. Dr. Houser is a past chairman of ASME’s Power Transmission & Gearing, and Gear Noise Committees; is an active member of the AGMA Noise Committee; and has contributed gear noise-related chapters to The Gear Handbook (D. Townsend, editor) and Handbook of Noise and Vibration Control (M. Crocker, editor). Dr. Houser is also a prolific author of technical papers — presented at conferences and other proceedings worldwide — of which many have appeared in this publication.

Jason Austin graduated from the GearLab at Ohio State University in June, 2013, with an M.S in mechanical engineering. While there he authored a doctoral thesis on the FEA of a wind turbine gearbox via collaboration with the National Renewable Energy Laboratory and the Gearbox Reliability Collaborative. Austin is currently employed by DNV GL as a pipeline integrity engineer, tasked with providing technical consultation to the oil and gas industry.

David Talbot is a research scientist — mechanical and aerospace engineering — at The Ohio State University, specializing in gear system efficiency, manufacturing and geometry, and load distribution simulation.
Global Industrial Outlook: Houston, We Have a Problem

By Brian Langenberg, CFA

With two armed conflicts underway impacting economic performance in Eastern Europe and the Middle East, we continue our investment stance of “Buy on the Sound of Cannons — Selectively” — but readers of Power Transmission Engineering should not be sanguine.

Geopolitics is beginning to exert significant pressure on several end markets: I specifically refer to oil price. West Texas Intermediate or WTI has dropped from its $95-105 trading range in late spring to about $75 — about a (25%) drop despite two ongoing conflicts because of excess supply.

In our view this is not an accident. We call it “the Putin’s Zipper Trade” because Vladimir has pretenses of greater Russian (Soviet?) glory, and at $110-oil, his budget balances and he struts around just the way the above “label” implies. In my view the Saudis are opting to attack him the best way possible — by cutting his government’s revenue by over 20%. About 85% of Russian government revenues are driven by natural resources. Lower commodity price correlates to a stronger dollar and is very, very bad for his government and position. The counterargument is that Saudi Arabia is seeking to defend market share in the face of rising — but higher-cost — U.S. production, where higher-cost basins become less attractive, particularly oil sands, when oil drops below $80. We disagree.

In a recent article, we wrote about how this hurts you.

WHAT MATTERS:

U.S. best growth spot. Non-residential construction, consumer durables (auto, housing) and gradually improving employment will offset weaker commodity-based demand.

Europe. Marginal hit (Nordics, resource-related parts of German economy) by conflict in Eastern Europe. Rest of continent still struggling with weak banking system, but that is nothing new.

Middle East. Buying weapons is in vogue (UTX), old construction projects (Otis) are getting finished, but new ones? Oil & Gas activity should remain strong even with production cuts because mature fields require more capital and the region is seeking to capture more of the value stream.

Brazil. Continues to get whacked. Exports are down (40%) the last two years already (weak China) on lower iron ore prices and volume. Petrobras story (oil) being hurt by lower oil price and emerging criminal charges/graft between Petrobras and people close to President Dilma Roussef. If that isn’t enough pain for you, weakening Japanese Yen will further hurt construction equipment pricing in the region.

War matters, Ebola does not. Warfare in Eastern Europe and Iraq caused further order and revenue push-outs in 3Q (Flowserve, others). Improving defense after-market revenue likely continues.

Oil & Gas: U.S. midstream and downstream are bulletproof but upstream spending will get tweaked downward. Petrobras scandal may create further incremental uncertainty with your OE customers but the offset is Mexico is finally serious about investing in offshore exploration and production. Netting it all out through — oil price down (25%) = (25%) lower industry revenue = bad for you. Most of your customer base is claiming it will have little impact. They are wrong.

The challenge isn’t 2014 — its 2015! Upstream represents, by far, the biggest chunk of capital spending and while at least half will be aftermarket/production driven, a significant piece includes incremental exploration and, with oil below $80, marginal production. When wells lose money they get capped.

Potential second derivative weakness could occur in a broad range of end markets including construction equipment, land based power generation (small p not BIG P), and ancillary products and services. To be clear, we do not anticipate a steep decline, but would be amazed if energy sector capital spending does not decline in 2015. Other end markets...

Mining: Still awful — but hard to get worse; aftermarket is now stabilized.

Power Generation: U.S. power generation remains weak, owing to efficiency gains throughout the economy and lack of regulatory support for new (Wind) construction. Recent election results should have marginal impact on ability of administration to pressure coal sector (generation and the commodity itself), but there are bigger fights looming. Globally the industry looks good — including coal and gas.

Transportation Infrastructure: More pothole filling; no major infrastructure upgrade anytime soon. Immigration...
fight poisons well — not to mention ObamaCare — for everything that was pragmatically possible, including the corporate tax reform that could have brought funds back to reinvest.

Machinery: Capital is scared, translating into project push outs at E&C firms even as current production is up year over year. Agriculture is rolling over in the U.S. and Latin America. The Russia growth story is dead in the near term. U.S. truck build rolls along on replacement demand. Construction equipment orders have weakened, though utilization remains high in the U.S. while Europe is flatterish and China declines. Non-residential activity and utilization supports a constructive view.

Consumer (auto, appliances): Old cars = continued U.S. strength. Auto-related end-markets will remain solid. U.S. residential recovery is on-track and will further support construction equipment demand.

Aerospace/Defense: Strong commercial build rates — coupled with two shooting wars and depleted U.S. inventories — argue for a continued recovery in aftermarket activity. Long-term we expect a U.S. defense recapitalization, but not before 2017 authorization, given the current Administration. We do think it happens no matter which party captures the White House in 2016, because anybody except the total infantile have woken up to realize you need to have both a) a foreign policy, and b) a big stick to back it up.

FOCUS COMPANIES: HALLIBURTON (HAL), BAKER HUGHES (BHI)

Precipitous drops in oil price often lead to M&A activity in an effort to drive out costs and protect or increase margin. To that end Halliburton recently announced an offer for industry rival Baker Hughes that would combine the #2 and #3 U.S.-based players. Diving into the capital spending data earlier we note that combined expected capex is about $5 billion in 2014.

The merger plan calls for $2 billion in annual cost synergies. Experience tells us that large deals hurt capital spending in the near-term (uncertainty, distraction of people worrying about their jobs), and post deal (paying for the merger through greater efficiencies and elimination of overlapping functions, people and assets).

Using their charts, about $600M (31%) relates to U.S. operational efficiencies, but also $220 million of R&D optimization.

Baker Hughes related projects carry higher risk. In reality there are no mergers — only acquisitions. Post-deal BHI shareholders will own 36% of the company. If two projects are marginal, the Halliburton project is more likely to win. You will want to think about this down to the Basin level.

Given both lower oil price and this merger, this is a good time to really focus on which Basins, OEMs and equipment service organizations your revenue stream is tied to in the Energy sector. PTE

Baker Hughes related projects carry higher risk. Using their charts, about $600 million (31%) relates to U.S. operational efficiencies, but also $220 million of R&D optimization.

Baker Hughes related projects carry higher risk. In reality there are no mergers — only acquisitions. Post-deal BHI shareholders will own 36% of the company. If two projects are marginal, the Halliburton project is more likely to win. You will want to think about this down to the Basin level.

Given both lower oil price and this merger, this is a good time to really focus on which Basins, OEMs and equipment service organizations your revenue stream is tied to in the Energy sector. PTE

FOCUS COMPANIES: HALLIBURTON (HAL), BAKER HUGHES (BHI)

Precipitous drops in oil price often lead to M&A activity in an effort to drive out costs and protect or increase margin. To that end Halliburton recently announced an offer for industry rival Baker Hughes that would combine the #2 and #3 U.S.-based players. Diving into the capital spending data earlier we note that combined expected capex is about $5 billion in 2014.

The merger plan calls for $2 billion in annual cost synergies. Experience tells us that large deals hurt capital spending in the near-term (uncertainty, distraction of people worrying about their jobs), and post deal (paying for the merger through greater efficiencies and elimination of overlapping functions, people and assets).

FOCUS COMPANIES: HALLIBURTON (HAL), BAKER HUGHES (BHI)

Precipitous drops in oil price often lead to M&A activity in an effort to drive out costs and protect or increase margin. To that end Halliburton recently announced an offer for industry rival Baker Hughes that would combine the #2 and #3 U.S.-based players. Diving into the capital spending data earlier we note that combined expected capex is about $5 billion in 2014.

The merger plan calls for $2 billion in annual cost synergies. Experience tells us that large deals hurt capital spending in the near-term (uncertainty, distraction of people worrying about their jobs), and post deal (paying for the merger through greater efficiencies and elimination of overlapping functions, people and assets).

FOCUS COMPANIES: HALLIBURTON (HAL), BAKER HUGHES (BHI)

Precipitous drops in oil price often lead to M&A activity in an effort to drive out costs and protect or increase margin. To that end Halliburton recently announced an offer for industry rival Baker Hughes that would combine the #2 and #3 U.S.-based players. Diving into the capital spending data earlier we note that combined expected capex is about $5 billion in 2014.

The merger plan calls for $2 billion in annual cost synergies. Experience tells us that large deals hurt capital spending in the near-term (uncertainty, distraction of people worrying about their jobs), and post deal (paying for the merger through greater efficiencies and elimination of overlapping functions, people and assets).

FOCUS COMPANIES: HALLIBURTON (HAL), BAKER HUGHES (BHI)

Precipitous drops in oil price often lead to M&A activity in an effort to drive out costs and protect or increase margin. To that end Halliburton recently announced an offer for industry rival Baker Hughes that would combine the #2 and #3 U.S.-based players. Diving into the capital spending data earlier we note that combined expected capex is about $5 billion in 2014.

The merger plan calls for $2 billion in annual cost synergies. Experience tells us that large deals hurt capital spending in the near-term (uncertainty, distraction of people worrying about their jobs), and post deal (paying for the merger through greater efficiencies and elimination of overlapping functions, people and assets).

FOCUS COMPANIES: HALLIBURTON (HAL), BAKER HUGHES (BHI)

Precipitous drops in oil price often lead to M&A activity in an effort to drive out costs and protect or increase margin. To that end Halliburton recently announced an offer for industry rival Baker Hughes that would combine the #2 and #3 U.S.-based players. Diving into the capital spending data earlier we note that combined expected capex is about $5 billion in 2014.

The merger plan calls for $2 billion in annual cost synergies. Experience tells us that large deals hurt capital spending in the near-term (uncertainty, distraction of people worrying about their jobs), and post deal (paying for the merger through greater efficiencies and elimination of overlapping functions, people and assets).
Maxon Motor
HELPS POWER ROSETTA MISSION

On Nov. 12, the European Space Agency (ESA) successfully landed a small laboratory on Comet 67P/Churyumov-Gerasimenko (Chury).

The lander featured ten instruments which may provide important clues to the origin of life. Two DC motors made by Maxon Motor were on board the mission.

For the first time in the history of space exploration, scientists have access to data from a comet’s surface. The Philae lander has a mass of 100 kilograms and features ten instruments. Maxon Motor, a Swiss-based drive specialist, provided two DC motors with a diameter of 13 millimeters each. These motors were used to lower the APXS instrument to the ground.

The APXS is an alpha x-ray spectrometer that is used to record the chemical composition of Chury and provide information on the presence of key elements such as carbon and oxygen. The instrument was developed at the Johannes Gutenberg University Mainz.

The individual instruments will now be activated automatically in sequence. The drives were then evaluated to determine if they survived the 10-year journey unscathed.

Oerlikon Drive Systems
PRESENTS ‘SHIFTING SOLUTIONS’ AT ITALIAN CONFERENCE

“Shifting Solutions” and the new fast track prototyping and small batch manufacturing facility from Oerlikon Drive Systems were presented at the EIMA International Agricultural and Garden Machinery Exhibition, in Bologna, Italy, from Nov. 12-16.

Oerlikon Drive Systems showed synchronizers and clutch packs that help to deliver increased efficiency, improved vehicle performance and reduced cost. A special area was dedicated to the new fast track prototyping and small batch manufacturing facility for cylindrical gears, synchronizers and drive subassemblies.

Oerlikon Graziano, a brand of Oerlikon Drive Systems Segment, produces around a million synchronizers per year for agricultural tractors, construction equipment, passenger cars and trucks. The company exhibited products from a range that runs from 62 to 170 millimeters in diameter and includes single, double and triple cone solutions, and its range of carbon synchronizers that help to increase the reliability and longevity of construction and agricultural transmissions.

David Brown Gear Systems
OPENS FACILITY IN PHILIPPINES

David Brown Gear Systems, a supplier of industrial gearboxes and aftermarket services for applications in the world’s core industrial sectors, announced the opening of its new industrial gearbox service and repair facility in Subic Bay Freeport Zone, Philippines.

David Brown Gear Systems (Philippines), Inc. is located in the heart of the region’s growing industrial sectors and is fully equipped with state-of-the-art gearbox strip, condition assessment, repair, rebuild, assembly and test facilities.

Utilizing more than 150 years of gear engineering and service experience, David Brown’s new service center will repair and upgrade gearboxes in industrial applications including mines, power stations, cement and sugar processing plants as well as oil and gas facilities and marine vessels.

“David Brown works in industries where maximum process availability is critical and we are proud to be the only industrial gearbox OEM operating a dedicated service center in the Philippines,” said Scott Gilmour, general manager of David Brown Asia. “Our new service center in Subic Bay brings us even closer to our valued customers and is a major milestone in the company’s plan to deliver premium gear engineering expertise throughout Asia.”

British Ambassador to the Philippines, Asif Ahmad, welcomed David Brown’s investment in Subic Bay.

“It is good to see another world-leading British company choosing the Philippines for its operations in this fast growing region,” said Ahmad. “Filipino businesses in industries such as mining, energy and construction will benefit from David Brown’s experience and expertise. With more than 150 years in the business, David Brown offers top-notch specialist transmission engineering and repair services and adheres to the highest global quality assurance standards. I am also impressed by David Brown’s commitment to transfer technology for the Philippines; particularly to new employees the company will be recruiting.”
Oerlikon Graziano

SLOTTED AS ‘SUPPLIER OF THE YEAR’ BY CLUB CAR

Oerlikon Graziano was recently awarded “Supplier of the Year” by Club Car, a brand of Ingersoll Rand. The award was announced during a ceremony that took place in Augusta, Georgia during Ingersoll Rand’s annual Supplier Day.

“This is the second consecutive year that we received an award from Club Car,” said Paolo Mantelli, Oerlikon Graziano’s Head of Performance Automotive.

The relationship between Club Car and Oerlikon Graziano started in 1994 with the development of electric axles.

In 2013, Oerlikon Graziano was awarded in the program “Supply Chain Partners Performance Excellence,” in recognition of contributions in several Value Management Program activities during 2012. This year, Oerlikon Graziano was chosen as “Supplier Executive of the year,” with Eric Powell, director of strategic sourcing at Club Car and Sheila Tierney, vice president of procurement at Ingersoll Rand, handing over the plaque directly to representatives of Oerlikon Drive Systems.

PTDA

HOLDS 2014 INDUSTRY SUMMIT, ELECTS AJAY BAJAJ PRESIDENT FOR 2015

Nearly 600 power transmission and motion control industry representatives from over 250 Power Transmission Distributors Association member companies attended the PTDA 2014 Industry Summit. Along with an additional 230 spouses, companions and guests, the top executives convened from Oct. 22-25 at the Hilton Orlando Bonnet Creek in Orlando, FL.

At the summit, the PTDA elected its 2015 Board of Directors and Manufacturer Council. Ajay Bajaj, president of Rotator Products Limited in Woodbridge, Ontario, Canada will become the PTDA’s president in 2015. Cliff Bannon, Eastern sales manager for Isostatic Industries Inc., in Chicago, IL will assume the duties of the PTDA Manufacturer Council chair in 2015, succeeding Brian Kolman, president of Brewer Machine & Gear Co. in St. Louis, Mo.

NES

RECEIVES WESTERN NEW YORK MANUFACTURING AWARD

Napoleon Engineering Services (NES) was honored by Business First of Buffalo with a Western New York Manufacturing Award for Operational Excellence at a ceremony held on May 13. NES was one of 21 manufacturers honored.

Founded in 1997 by lifelong Western New York resident Chris Napoleon, the privately held NES is an independent, single-point resource for bearing inspection, bearing testing and custom bearing manufacturing. With core competencies in high-precision custom ball and roller bearings using super elastic Ni-Ti alloys, wear-resistant, high-life materials and coatings, and advanced design technologies, the company has grown into a key resource for bearing manufacturers, distributors and OEMs across a diverse array of markets.

“It is beyond humbling to see the growth of NES over the years, since its beginnings in a spare bedroom and a half garage bay of my home in 1997,” Napoleon said. “We would not be where we are today without the support of our loyal customers, employees and the Western New York community. This is our home. And we look forward to continuing to build and strengthen our presence here in the years to come.”

Pat Wheeler

RECEIVES INAUGURAL WENDY B. MCDONALD AWARD

To honor the memory of Wendy B. McDonald, one of the power transmission/motion control industry’s pioneers, the PTDA Foundation has established the Wendy B. McDonald Award.

The award acknowledges a woman who established herself as a critical contributor to her company’s success and affected positive change within the power transmission/motion control industry. The first recipient of the Wendy B. McDonald Award was Pat Wheeler of Motion Industries (Canada).

Wheeler joined BC Bearing (now Motion Industries Canada) in 1980 as a shipper/receiver. She moved into inside sales
and then to office manager in 1990. In February 2003, she was appointed branch manager—the only female branch manager in the company at that time. In 2008, she was recognized by McDonald at the annual sales meetings for almost single-handedly managing her territory.

In her acceptance speech during the PTDA Industry Summit in Orlando, FL, Wheeler credited McDonald with being her idol and mentor because she paved the way for her to feel confident enough to accomplish all that she has in her 34 year career.

McDonald’s daughter, Penny Omnes, and son, Scott MacPherson, were on hand to present Wheeler with the award.

QA1
HONORED WITH TWO SEMA GLOBAL MEDIA AWARDS

QA1, a manufacturer of high-performance suspension components, has been honored with two Specialty Equipment Market Association (SEMA) Global Media Awards for its carbon fiber driveshafts and Mopar Rear Suspension Conversion System.

SEMA introduced the Global Media Award program in 2004 to highlight the wide appeal of specialty-equipment products to enthusiasts on every continent. Products are reviewed by a panel of 35 top automotive journalists from more than 20 countries around the world and recipients were recognized in an evening program during the 2014 SEMA Show in Las Vegas, Nevada.

QA1’s carbon fiber driveshafts, which are currently offered for street performance vehicles as well as dirt late models, are a major new offering from QA1’s Advanced Materials Division. These driveshafts are lighter, stiffer, stronger and safer than aluminum and steel driveshafts and are filament wound in-house using 3MTM Matrix Resin that is exclusive to QA1 performance driveshafts.

“QA1 is redefining industry standards by performing the filament winding in-house, which allows us to make carbon fiber driveshafts specific to each application,” said Travis Gorsuch, QA1’s Director of Advanced Materials. “We’re very excited for them to be recognized as a high-quality product that is relevant in multiple markets.”

The second Global Media Award for QA1 was for the Mopar Rear Suspension Conversion System, a revolutionary bolt-in conversion from leaf springs to coil-overs for Mopar A-Body vehicles. The system utilizes a 6-link suspension that builds upon the traditional 4-link system and replicates its geometry while still mounting to the existing chassis mount locations.

“It’s an honor to be recognized for this rear system,” said Karl Hacken, vice president of engineering at QA1. “We’ve put a lot of time into development so that it would be a practical bolt-in system, allowing it to be available to a wider audience that may not be comfortable cutting or welding on their vehicles. The awards are a testament to QA1’s emphasis on creating and producing performance-based products that have wide appeal.”

Timken
ACQUIRES ASSETS OF REVOLVO LTD.

The Timken Company announced it has reached agreement with Eriks NV to acquire the assets of Revolvo Ltd., a specialty bearing company based in Dudley, U.K.

Revolvo makes and markets ball and roller bearings for industrial applications in process and heavy industries. The company’s split roller bearing housed units are used by mining, power generation, food and beverage, pulp and paper, metals, cement, marine and waste-water end users. In 2013, Revolvo posted sales of approximately $8.3 million.
“We’re pleased to have Revolvo become part of Timken,” said Hans Landin, product line executive, power transmission and engineering systems for Timken. “The Revolvo team brings a wealth of experience and well-established customer relationships, and their split roller bearing housed unit line will strengthen the Timken portfolio of bearing and power transmission products.

“These split bearing housed units bring additional breadth to our industrial product solutions while addressing specific customer needs,” Landin added. “Revolvo’s expertise and quality product line, coupled with Timken’s global reach and market access, will allow us to leverage resources to improve competitiveness and accelerate the growth of housed unit products, particularly in Europe and Asia.”

Revolvo’s line of split-to-the-shaft roller bearing housed units enables the bearing to be fitted without requiring access to the shaft ends. Instead, it can be built around the shaft, which reduces downtime because no other drive components must be removed during installation or for maintenance. The product design accommodates misalignment, helps extend up-time, reduces maintenance costs and increases plant efficiency for end users.

The acquisition is subject to certain customary closing conditions, including employee consultation. Terms were not disclosed.

Kevin McCloskey RECEIVES WARREN PIKE LIFETIME ACHIEVEMENT AWARD

The Power Transmission Distributors Association (PTDA) has named Kevin McCloskey, Category Manager at Kaman Industrial Technologies Corporation, the 24th recipient of its Warren Pike Award for lifetime achievement in the power transmission/motion control (PT/MC) industry.

McCloskey received the award at the association’s Industry Summit in Orlando, FL. The award was established in 1984 to honor individuals who have demonstrated outstanding, continuous, long-term support of PTDA and the PT/MC industry.

McCloskey has served on numerous PTDA committees and task forces and is currently a member of the Research & Innovation Committee. McCloskey also served on the Board of Directors from 1996-2002 and as the board president in 2001.

“Kevin has been a great partner through the years for Dodge,” said Jeff Moore, vice president of marketing and mechanical power transmission for Baldor Electric Company. “He collaborates well with our whole organization and works to achieve not only the best solution for Kaman, but also for the manufacturer as well. The thing I appreciate about Kevin is his transparency. If he doesn’t like something he will tell you. It’s easy to have a trusting relationship when you can have frank conversations with a channel partner and Kevin has always been one of a handful of people who will roll up his sleeves and work to achieve a mutually beneficial result.”
Emerson Power Transmission
INTRODUCES UPGRADED CONVEYOR CHAIN

Emerson’s Power Transmission Solutions business introduced its new System Plast NG Evo conveyor chain, featuring a proprietary, low-friction FDA-approved material for dry conveying in food packaging applications.

“NG Evo builds on the success of original NG chain, which is widely used for dry conveying in the bottling industry,” said Jeff Himes, System Plast Senior Product Manager. “The new chain provides a higher breaking load, greater elasticity, lower coefficient of friction and much greater abrasion resistance than the original. NG Evo significantly expands options for dry conveying to meet sustainability and water conservation goals, which will grow in importance for food packaging as the U.S. already grapples with regional water shortages.

“All of the physical properties of the original NG chain have been enhanced to meet specific challenges in food processing applications,” Himes added. “In addition, beverage handling conveyors are typically lubricated with soap and water...
Brother Gearmotors

EXPANDS RANGE FOR NORTH AMERICAN CUSTOMERS

Brother Gearmotors, a manufacturer of sub-fractional AC gearmotors and reducers for the packaging, food & beverage and unit handling industries showcased several new benefits for customers in North America.

Gearmotors from Brother are compact in size, energy efficient and sealed for life, says Matthew G. Roberson, senior director for OEM and gearmotor business. Each model comes with a long-lasting protective paint coating whose electrostatic application assures a consistently tough, chemically-resistant coating designed to withstand especially harsh production environments.

According to Roberson, Brother customers who have installed Brother gearmotors often become customers for life. Durability and reliability are hallmarks of the Brother product line, he says. All gearmotors carry a high-grade grease standard, which means they are lubricated for the life of the product, helping to eliminate costly downtime for lubrication changes.

At its booth, Brother announced new bore sizes that open up a broader potential customer base for the company’s gearmotors.

In addition, this summer Brother Gearmotors moved into a new world-class manufacturing facility, based in Bartlett, Tennessee. The modernized assembling facility – both ISO 9001:2008 and ISO 14001:2001 certified – allows Brother Gearmotors to shrink lead times for customer orders to an estimated three days. On-site technology also makes available a broader product mix to North American customers, including 16 different gear ratios and six voltage options. The facility will be a North American complement to the primary gearmotor factory, which has produced more than 10 million units over its 40-year history.

For more information:
Brother Gearmotors
PO Box 14349, East Providence, RI 02914
Phone: (859) 727-5263
jeff.himes@emerson.com
www.emerson-ept.com

Igus Energy Chains

SIGNIFICANTLY REDUCE DRIVE POWER

Recent tests and sample calculations performed at igus’ test laboratory prove energy consumption can be drastically reduced by using the right cable carrier material with a sophisticated design, especially in long-distance, high-load applications. If Rol E-Chain—a specially designed cable carrier with built-in wheels that rolls instead of glides to facilitate travel over long distances—is used, the friction factor is drastically reduced from 0.3 to less than 0.1. This correlates to a 37 percent reduction in drive power with Rol E-Chain when compared to a traditional gliding application, as well as a significant decrease in overall costs.

Metal cable carriers are being replaced more and more by plastic Energy Chains because they are lightweight, require no lubrication and can withstand even the toughest applications.

For more information:
Igus Inc.
PO Box 14349, East Providence, RI 02914
Phone: (800) 521-2747
Fax: (401) 438-2200
sales@igus.com
www.igus.com

Ringfeder Power Transmission

ANNOUNCES NEW LOCKING ASSEMBLIES

New locking assemblies from Ringfeder include a central lock nut for safe and backlash-free clamping in a matter of seconds. Labelled the RfN 7070, RfN 7075, RfN 7085, and RfN 7090 series, these locking assemblies are designed for easy mounting, compact dimensions and a safe connection between the shaft and hub.

Shaft-hub connections in modern transmission systems require smaller, faster and more powerful technology. Examples include applications with backlash-free synchronous transmissions powered by compact servomotor or multiphase motors, where positioning is critical. Conventional joints with keyways, grub screws and simple bushings do not guarantee zero backlash in such precision applications.

For more information:
Ringfeder Power Transmission
Phone: (201) 666-3320
sales.usa@ringfeder.com
www.ringfeder.com
The motors might be small, but the big-brain technology driving these electrical wonders was on full display at the 2014 Small Motor & Motion Association Fall Technical Conference, convened November 4-6 in St. Louis, MO.

SMMA, the manufacturing trade association (120 members strong) that tends to the best interests of the electric motor and motion control industries — including manufacturers, suppliers, users, consultants and universities — played gracious host to a wide array of presenters from an equally diverse range of sources — from academia to the federal government. Like gears, motors are most everywhere, as evidenced by SMMA’s membership (consumer-, public interest-, national defense- and commercial-oriented) demographic which includes: appliance; transportation; medical equipment; office automation and computers; aerospace; and industrial automation. The association’s mission: To “serve as the principal voice of the electric motors and drives industry” and to provide a forum to “develop, collect and disseminate technical and management knowledge.”

“Collect” and “disseminate” indeed; check out this sampling of Abstracts of Conference presentations. They reflect the findings of many hours, days, months — maybe years in some cases — of pre-competitive R&D conducted in conjunction with — and on behalf of — SMMA’s members. Even a cursory glance confirms that many of these presentations — some works-in-progress — conjure and explicate new motor-and-motion technologies attending numerous applications/industries of intrinsic value and importance of some kind to various sectors of the U.S. economy and security. Such as:

The Use of Thin Lamination Materials in Motors. Kamran Ramezani, President, Ramezani and Associates.

Fluorinated Greases for Extended Bearing Life in Motors. Carl Walther, Senior Technical Service Engineer, DuPont.

Permanent Magnet Motors for Industrial Applications. Emmanuel B. Agamloh, PhD, Senior Motors and Drives Consultant, Advanced Energy.

Challenges in the Design of Very High RPM Motors. George Holling, Technical Director, Rocky Mountain Technologies, Inc.

Mosolver: Robust Feedback for Harsh Environments. Don Labriola, PE, President, QuickSilver Controls Inc.

Magnetic-Mechanical Co-Simulation for Electric Machines. Adrian Perregaux, Consulting Representative, Infolytica.

EMERF PCEMRC Update: Design of Ferrite Assisted Synchronous Motor (Fa-SrRM) with Aluminum Conductors in Stator. Research project of the EMERF Pre-Competitive Electric Motor Research Consortium (PCEMRC) with Texas A&M University John Calico, Senior Research Engineer, Moog Components Group, and EMERF President.

Control Aspects of Various Electric Motors. Dal Y. Ohm, PhD, President, Drivetech Inc.

Effects of Magnetic Laminate Processing on Core Losses and Permeability. Aleta Wilder, PhD, Wilder Innovations LLC and The University of Texas; and Tapan Shah, T. Jayaraman and Stephen Marr, Carpenter Technology Corp., Specialty Alloys Operations.

Meanwhile, as all of this was going on, a handful of short-but-informative motor courses was being presented on-site by industry luminaries. They included:

For more information:

SMMA P.O. Box P182 S. Dartmouth, MA 02748 Phone: (508) 979.5935 Fax: (508) 979.5845 info@smma.org www.smma.org
January 5-9 – SciTech 2015 Kissimmee, FL. SciTech 2015 will draw more than 3,000 participants from 40 countries and feature more than 2,500 technical papers, including the best papers from students around the world. Bringing together 11 individual technical events at a single location, this forum is the place to engage with colleagues within each discipline and to interact with experts in those fields. Discuss the science, technologies, policies and regulations that are shaping the future of aerospace. Walk away with innovative solutions that will create new opportunities and overcome challenges. For more information, visit www.aiaa-scitech.org.

January 26-28 – 2015 AHR Expo McCormick Place, Chicago, IL. The show brings together over 2,000 exhibiting companies and 40,000 visitors, representing the entire spectrum of the industry, HVACR manufacturers, engineers, contractors, OEMs, facility managers and other professionals. In addition, attendees will find over 100 educational seminars, workshops (presented by ASHRAE and others) and new product presentations. Those looking to keep up with the latest technology and trends, get face to face with the experts, and stay connected will enjoy this event. For more information, visit www.ahrexpo.com.

February 4-6 – SEMICON Korea 2015 COEX, Seoul, Korea. SEMICON Korea 2015 is the leading semiconductor technology event to explore the latest market trends and future developments for technology, featuring extensive technical forums, business programs and standards programs. For more information, visit www.semiconkorea.org.

February 10-12 – MD&M West Conference Anaheim Convention Center, Anaheim, CA. Delve into the latest challenges and opportunities that are impacting medical device design and manufacturing with the 2015 MD&M West Conference. Attendees can hear from the industry’s brightest and gain valuable insights that will help them overcome the most crucial challenges from concept to market. Build knowledge and networks at this annual industry gathering. For more information, visit http://mdmwest.mddionline.com.

February 15-18 - Middle East Turbomachinery Symposium Sheraton Doha Resort & Conference Hotel, Doha, Qatar. The 3rd Middle East Turbomachinery Symposium, held 17-20 March 2013 in Doha, is the premier turbomachinery event in the Middle East, combining a world-class technical conference and international exhibition. Technical sessions offer delegates continuing education credits while the exhibit hall featured over 65 industry-leading companies. For more information, visit http://mets.tamu.edu.

March 4-7 – The MFG Meeting Orlando World Center Marriott, Orlando, FL. The MFG Meeting brings together the entire manufacturing industry for a unique conference experience that provides unparalleled educational and networking opportunities. Engage with the industry’s thought leaders and discuss business solutions with peers—all in one place. One of the highlights of this year’s conference will be a training session with Michael Hoffman, President of Igniting Performance, a company that specializes in sales, leadership and building customer loyalty. His innovative program, “Secrets of the 1%ers,” taps into the methods and the motivations of the best of the best—showing how they became influential—and how to replicate their success. For more information, visit www.themfgmeeting.com.

March 9-11 – SIAF Guangzhou 2015 China Import and Export Fair Complex, Guangzhou, China. The 2015 edition of SPS – Industrial Automation Fair Guangzhou is gearing up to be a must-attend industrial automation event in China. The event will cover over 40,000 square miles of exhibition space across four halls. Recognizing the importance and future growth prospects of the South China market, exhibitors are ready to present their latest collection of innovative solutions and products to international and domestic visitors. To date, over 300 exhibitors are confirmed to introduce the latest industrial automation technologies, including control systems, sensor technologies, software development, drive systems, components and much more for manufacturing-based industries. For more information, visit www.spchinachina.com.

March 23-26 – Automate 2015 McCormick Place North, Chicago, IL. Automate is the largest solutions-based showcase of automation technologies in North America. Automate demonstrates the full spectrum of automation technologies and solutions for a broad array of industries. Companies that provide integration of automation, robotics and machine vision will show actual demonstrations of systems that will allow attendees to see live demos solving challenges they face in their industry, and also to learn from solutions used in other industries that may be beneficial to them. The rest of the show features the latest automation, robotic, vision and motion control technologies and systems on display from leading global suppliers. A comprehensive educational conference accompanies the Automate show. Keynote speakers include Steve Wozniak, cofounder of Apple. For more information, visit www.automateshow.com.
CALL FOR PAPERS!

Are you sitting on an idea for a technical paper but wondering where to present it? Do you have one already written, sitting on your desk, gathering machine dust?

How about *Power Transmission Engineering*? We are always looking for gearing- and power transmission component-relevant technical papers for publication in the magazine and in its digital version. Having your work appear in *Power Transmission Engineering* guarantees you an audience of the most experienced and discriminating industry players. You say your work has not been peer-reviewed? Not a problem, as we are lucky—and thankful—to have on-hand some of the most experienced and brilliant minds in the industry—our technical editors. So if your work “passes muster” and is published, you’ll know you were reviewed by the best—and most demanding.

Chances are you’ll be creating the paper under the auspices of the company for whom you work or own, or for one of the various industry-relevant associations. That means they as well will bask in the reflected glory that accrues with publication in *Power Transmission Engineering*.

For publication guidelines and more information, please contact Jack McGuinn at jmcmguinn@powertransmission.com.
FREE SUBSCRIPTION

1. [] YES I want to receive/continue to receive Power Transmission Engineering FREE!
 [] No thank you.

 Name: ___________________________ (print)
 JobTitle/Position: ___________________________
 Signature ___________________________ (required)
 Date: ___________________________

2. E-mail ___________________________
 (So we can notify you when the online edition is available)
 [] I ONLY want the digital edition (e-mail required)

3. Please update your contact information or attach you business cards here. (No Staples)

 Company Name: ___
 Address: ___
 City: ___
 State/Province: _________________________ ZIP/Postal Code: __________________
 Country: __
 Telephone: ___________________________ Fax: ___________________________
 E-mail: __
 Website: __

4. How is THIS LOCATION involved with power transmission products? (Check all that apply)
 [] WE MAKE power transmission products (10)
 [] WE BUY power transmission products (12)
 [] WE SELL power transmission products (Distributors, sales reps. etc.) (14)
 [] WE DESIGN products with power transmission components in them. (16)
 [] Other (please describe) (15) ___________________________

5. What is your primary job function responsibility? (Check one)

 [] Corporate Management (1)
 [] Plant Engineering (2)
 [] Design Engineering (3)
 [] Marketing & Sales (4)
 [] Manufacturing Engineering (5)
 [] Purchasing (6)
 [] Quality Control (7)
 [] Factory Automation (8)
 [] Maintenance (9)
 [] Other (10) ___________________________

 Is there a colleague within your company that might benefit from having their own copy of Power Transmission magazine?

 Name: __
 Title: ___

DIGITAL SUBSCRIPTIONS

[] YES, I want to be notified each issue when Power Transmission Engineering is available online
[] YES, I would like to receive Power Transmission Engineering’s monthly e-mail newsletter
[] YES, I would like to receive Power Transmission Engineering’s twice monthly e-mail Product Alerts
[] YES, I would like to receive 3rd-party e-mails from Power Transmission Engineering’s advertisers and partners
[] YES, I would like to receive subscription renewal notices by e-mail
[] No, I do not wish to be contacted by e-mail.

FAX TO 1-847-437-6618 or VISIT US ONLINE AT www.powertransmission.com/subscribe.htm
The Model T Ford: One Mean Machine

Some of us are old enough to have had, say, great-grandparents, for example, who when the occasion arose would casually refer to cars as “machines.” It sounded funny and arcane, and we would snicker under our breath. But of course the laugh was on us; back in the day—1910s through the 1930s—automobiles were commonly referred to as machines.

And the “machine” that ruled the streets in those days—and claimed what then was only the beginning of the greatest “middle class” demographic in the history of the world—was the Ford Model T—AKA Tin Lizzie, T-Model Ford and Model T. To be clear, however—Ford did not invent the automobile; cars had been around for many years.

What Ford did “invent” was affordability—at least in terms of car-buying. His then-state-of-the-art manufacturing processes allowed him to sell his cars to the working man—including his own assembly line workers—for around 300 bucks and still make him a millionaire many times over. At the time, it was a win-win of truly historic proportions on several levels—societal, economic, etc.

“I will build a car for the great multitude,” said Ford. “It will be constructed of the best materials, by the best men to be hired, after the simplest designs that modern engineering can devise. But it will be so low in price that no man making a good salary will be unable to own one.”

Supporting the fact that the best ideas are often someone else’s, credit for the “assembly line” goes not (as it often does) to Ford but to another car guy—Ransom E. Olds—who mass-produced his Oldsmobile Curved Dash in 1901. But the invaluable, priceless refinements and sophisticated system advances during the production run of the Model T are attributed primarily to Ford and his fellow visionaries—who happened to be engineers.

But having one of these machines wasn’t much use if the thing didn’t work; not-a-problem. The Ford Model T (FMT) was a workhorse of the road, powered by an engine that was designed to be manufactured providing the horsepower. Let’s take a closer, under-the-hood look at the heart of the machine that moved America—the Ford Model T engine.

The Ford Model T Engine

The engine was an inline-four—*all four cylinders cast into one engine block*. This would prove to be BIG. The FMT’s “monobloc” design was known, but not particularly popular when production started in 1908; but it lent itself to mass production, showing Ford’s pioneering appreciation of focus on design for manufacturability. Of equal brilliance, the head was detachable. This not only further streamlined Ford’s plant process, but also made his future customers’ valve jobs easier and, therefore—cheaper.

By The Numbers

- **Bore**: 3¾” (95.25 mm)
- **Stroke**: 4” (101.6 mm) even
- **Total displacement**: 177 cu in (2,900 cc)
- **Valve train**: side-valve (flat-head) design
- **Crankshaft**: Three main bearings

The compression ratio was low by modern standards, but typical for the era, making the engine forgiving of poor fuel quality and minimizing cranking effort at starting.

Model T Transmission

The rear-wheel-drive FMT was designed with a three-speed, planetary gear-oriented transmission. It was controlled with a lever on the steering wheel. The left pedal was used to engage the gear.
- With the floor lever in either the mid position or fully forward, and the pedal pressed and held forward, the car entered **low gear**.
- When held in an intermediate position the car was in **neutral**.
- If the driver took his foot off the left pedal, the FMT entered **high gear**—but only when the lever was fully forward.

Oh, and by the way—no separate clutch pedal. And yet it sure seems like some very fancy footwork was required to drive one of these babies. And some nerves of steel.

When the car was in neutral, the middle pedal was used to engage **reverse gear**, and the right pedal operated the transmission brake.

There were no separate brakes on the wheels.

The floor lever also controlled the parking brake (no separate brakes on the wheels, but it had a frigging parking brake), which was activated by pulling the lever all the way back. Power was delivered to the differential via the single universal joint attached to a torque tube that drove the rear axle.

Appreciated for its simplicity, reliability, and economy, Ford’s Model T engine remained in production for many years; millions of units were produced. As for the engine design—it lived on beyond the vehicle itself, with industrial, marine, and military applications extending its production run. And one more thing: the Model T engine is on the Ward’s 10 Best Engines of the 20th Century list. ([Wikipedia.org was the primary source of information for this article.](http://Wikipedia.org))
Inefficient drive systems create heat. A bunch of drives generating heat raises your cooling costs. So, if you aren’t using the ultra-efficient (IE4) MOVIGEAR® Mechatronic Drive System from SEW-EURODRIVE, then you are paying for energy twice! MOVIGEAR combines the motor, gearing and electronics into one highly reliable, efficient and hygienic unit. Independent research has proven that it reduces startup and operating costs by 20-30%. It’s time to stop running the heat and air conditioning at the same time!
Your One-Stop Shop for Mechatronic Components

EXPLORE | DESIGN | BUY ONLINE

www.sdp-si.com/shop

Thousands of inch & metric mechanical components:
gears, timing belts, pulleys, couplings & more
Custom belt widths cut to your specifications
Customized design and technical support
Get free 3D CAD models to use in your designs
AS9100C Registered

Stock Drive Products
2101 Jericho Turnpike, New Hyde Park, NY 11040
Tel. (516) 328-3300 • sdp-sisupport@sdp-si.com
www.sdp-si.com