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engineering, a theme that rose 
to prominence in the late 1980s. 
Whilst CAE models of many differ-
ent systems exist, and may contrib-
ute to various Digital Twins, this is 
not the focus of this paper. 

For this paper, the digital twin refers 
to a digital asset that exists alongside 
the physical asset during its opera-
tional life, providing insight into and 
feedback on the physical asset’s per-
formance and health. Thus, the focus 
is on the DTI, with the potential to 
aggregate data into a DTA for the 
gearbox design being considered, and 
within the DTE set up by Hexagon.

In respect of the physical asset 
across its life, nothing is more impor-
tant about its performance than its 
ability to function, i.e., reliability, and 
for CAE, nothing is of greater impor-
tance than to be able to predict the 
reliability of a product being designed. 
Thus, for this study, whilst gearbox 
noise, efficiency, and thermal behav-
ior may be of interest, the primary 
interest is fatigue and reliability. 

Working with the OEM
Hexagon has been working on in-
service digital twins with a number 
of different manufacturers of 

ground vehicles, extending across 
different noncompeting indus-
tries. This paper is based on a 
collaboration with one company 
in particular, a world-renowned 
manufacturer of ground vehicles. 
For reference, the vehicles are ICE 
driven and the gearboxes have sev-
eral discrete ratios. 

This project has gathered a wealth 
of data, all of it derived from the oper-
ation of these vehicles and processed 
by Hexagon using its digital twin. To 
protect the interests of its client (the 
OEM), minimal data is displayed. 
Nonetheless, the narrative, insight, 
conclusions and ambitions from the 
study are the same as for the OEM, 
whose principal engineers have read 
and approved the text of this paper 
prior to its submission. 

Building the Cloud-Based 
Digital Twin

Whilst the DTP is not the focus 
of this paper, the technical meth-
ods used owe their origins from 
the DTP. During the design phase 
a designer must carry out calcula-
tions to confirm that the gearbox is 
fit for purpose, and in this respect 
durability/reliability is the most 

In 2016 (Ref. 1), Grieves expanded 
on the definitions, confirming that 
the digital twin covers all aspects of 
the product lifecycle, but with dif-
ferent purposes. For example, the 
digital twin prototype (DTP) covers 
the design phase, when the physi-
cal product does not actually exist. 
Following from this, the digital twin 
instance (DTI) is created as a digital 
representation of a specific physical 
product, to be linked to that physi-
cal product through its entire life. 
Interestingly, he goes on to talk 
about digital twin aggregates (DTAs), 
where data from multiple DTIs is 
aggregated within what he calls a 
digital twin environment (DTE). 

It is interesting to note that, using 
this definition, the digital twin pro-
totype (DTP) aligns pretty well with 
another commonly used term, the 
design twin. Within this context, the 
DTP/design twin is clearly a com-
puter simulation of the engineered 
system for use during the design 
phase. The author finds this curious 
since this is essentially a computer-
aided engineering (CAE) model, 
provided to and used by industry 
for well over 30 years and promoted 
within the context of concurrent 

Defining the Digital Twin
In recent years, few terms in engineering have been given as much airtime as digital twin, however, it is often applied 
in so many different contexts that its interpretation has become extremely confused. The concept of a digital twin was 
described in 2001 in a presentation by Michael Grieves, being described as a “conceptual idea for PLM [Product Life-
cycle Management]” (Ref. 1). In this, digital information would be a “twin” of the physical system, would be embedded 
within the physical system itself and be linked with that physical system through its entire lifecycle. Grieves expanded 
on the idea over subsequent years and by studying work by the same, originating author, it can be seen how the differ-
ent interpretations of the term digital twin have arisen.
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important consideration. The pre-
diction of gearbox reliability does 
not start from a clean sheet. Gear-
box fatigue has been a subject of 
mathematical methods that have 
been developed over the years and 
implemented in standards (ISO 
6336 for gears, ISO 16281 for bear-
ings [Ref. 2]) that have become 
universally implemented. 

Additionally, the digital twin has 
included many of the refinements 
that have been proven to be essen-
tial in the prediction of gear and bear-
ing performance over recent decades. 
Housing stiffness has been shown to 
impact gear and bearing misalign-
ment and hence life (Ref. 3), and this is 
included; likewise, gear micro-geome-
try is introduced to accommodate mis-
alignment from system deflections, 
impacting gear stress and fatigue; 
finally, bearing internal load-shar-
ing, pre-load, and misalignment are 
also included. All these influences 
are part of the commercial software 
package, Romax Enduro, which has 
been marketed under various Romax 
names since its release in 1994 and 
which was acquired by Hexagon in 
2020. Romax Enduro is principally 
used during the design phase of the 
gearbox, i.e., as a DTP.

Both ISO 16281 and ISO 6336 out-
put component fatigue damage. This 
does not predict failure. Rather, 100% 
damage for the L10 life of bearings 

indicates 10 percent failure, whereas 
100 percent damage (a safety factor 
of 1.0) for gears indicates 1% failure. 

Being a long-term user of Romax 
as a DTP, the OEM had a confirmed 
model of the gearbox which could be 
used for the digital twin study. This 
model had been used in the design of 
the gearbox in question (i.e., a design 
twin), and a design duty cycle had 
been established by the OEM with the 
intention of representing the usage 
pattern that the vehicles would see 
during an anticipated working life. 

However, the OEM has strong 
ambitions for using data to learn 
more about their applications and to 
derive a competitive advantage. In 
recent years, the OEM has installed 
on its standard production vehicles 
the instrumentation that is necessary 
to transmit to the Cloud significant 
quantities of controlled area net-
work (CAN) data. It is important to 
note that this setup was established 
to understand the vehicle as a whole, 
not just the gearbox—this gearbox 
digital twin work simply worked with 
data that was already being down-
loaded. Of this CAN data being down-
loaded, the following data were avail-
able at a frequency of 1Hz:
•	 Engine speed
•	 Engine torque
•	 Selected ratio
•	 Gearbox oil temperature

It is obvious how this data can be used 
as an import to define an “in-service 
duty cycle,” against which component 
fatigue calculations can be carried out. 
Indeed, Romax has been able to import 
time domain data for fatigue calcula-
tions for over 15 years. However, this 
project provided additional challenges. 

The first was to set everything 
on the cloud and to have it operat-
ing without human intervention or 
human interaction. This is required 
because, in the end, the digital twin 
would need to process the data from 
many thousands of vehicles. The dig-
ital twin was set up such that the data 
was transferred and processed daily 
for each vehicle. Discussions did take 
place regarding having more (and 
less) frequent data transfer; however, 
it was decided that daily process-
ing would provide the best balance 
between cost/complexity and insight. 

Data integration, the ability to pull 
data across the cloud and integrate dif-
ferent solutions, was also required. In 
this respect, Hexagon has assembled a 
team that spans across its different 
offerings, combining Xalt Integration 
with Romax. This now handled by 
Nexus, Hexagon’s open digital reality 
platform for manufacturing that is 
developed to provide connectivity and 
interoperability across all aspects of 
design, manufacturing, metrology and 
in-service operation for all Hexagon’s 
client industries.

Figure 1—Flow diagram illustrating the processing of CAN data from the vehicle.
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Hexagon successfully built the 
digital twin and as of the end of 
December 2022, it had successfully 
processed eight months’ worth of 
data from 10 different test vehicles, 
with more being processed each 
day. The fact of the digital twin’s 
successful operation is notewor-
thy. However, of greater interest is 
what the acquired data has already 
revealed in terms of how to approach 
the reliability engineering of gear-
boxes. This is to be the focus of the 
rest of the paper. 

Predicting Gearbox 
Reliability

Challenges in Predicting 
Bearing Reliability
As has been stated, it is possible to cal-
culate the fatigue damage for the gears 
(contact and bending) according to 
ISO 6336 and for the bearings accord-
ing to ISO 16128. 100 percent damage 
pertains to a 1 percent failure rate for 
the gears and a 10 percent failure rate 
for the bearings. The conversion from 
fatigue damage to reliability for bear-
ings was discussed at length in a paper 
(Ref. 4) by the same author at the CTI 
International Congress and Expo in 
Novi, MI, on 23–25 May 2023. 

The paper identifies that the 
Digital Twin took the most ‘official’ 
recommendation for the reliability 
characteristic of the rolling element 
bearings, i.e., the reliability factor 
A1 from ISO. Fundamental to this is 
a Weibull shape parameter (b) of 1.5. 

However, the paper also identi-
fied that there is substantial reason 
to question this data, owing to large 
variations in recommended val-
ues of b from different sources. GE 
(Ref. 5) proposes values that range 
from 0.7 to 3.5, whilst Bertsche and 
Lechner (Ref. 6) propose 1.1 to 1.35. 
Meanwhile, a globally renowned 
aerospace manufacturer (Ref. 7) 
claims values as high as 4.0.

The differences in these values 
are not simply of academic inter-
est—they have a massive impact on 
the predicted failure rates of gear-
boxes. With such a wide range of val-
ues of b available, the net ends up 
being cast so wide that pretty much 

any observed outcome could be said 
to correlate with one or other of the 
quoted reliability models. 

The CTI paper identified and 
quantified a key source of variabil-
ity—that of the duty cycle. A fleet 
of 10 vehicles was monitored for a 
period of eight months, with their 
usage data recorded at a rate of 1 
Hz. Without the Digital Twin, these 
vehicles would have been assumed 
to have identical usage patterns. 
Through simulation, the paper was 
able to quantify the error, i.e., the 
reduction, in observed Weibull shape 
parameter that would have occurred 
if the failure analysis of the fleet 
was carried out against time and not 
damage; that is to say, ignoring the 
duty cycle of each vehicle against 
including it in the analysis. 

The analysis showed that if a value 
of b=1.5 is the correct descriptor of 
bearing reliability, failing to account 
for the variation in vehicle usage 
would mean the fleet would appear 
to fail according to a value of b=0.67. 
Even if bearings are, in fact, much 
more reliable, with a value of b=4.0, 
this makes no difference and, again, 
the fleet would appear to fail accord-
ing to a value of b=0.68. 

This analysis shows the absolute 
importance of monitoring the usage 
of each vehicle if the prediction of 
component reliability is to make any 
sense. This was impractical/uneco-
nomic in the past, however, with 
recent advances in data acquisition, 

a far more rigorous approach to 
component reliability analysis now 
becomes possible. Therefore, our 
attention should turn to what would 
be used for gear reliability. 

Sources of Data for Gear 
Reliability
There is a wide range of sources for 
values on gear reliability, and unfor-
tunately, the picture appears even 
more confusing than it is for bearings. 
For a start, different studies (using 
different data sets) conclude that 
different reliability models provide 
the best fit. Some references use the 
Weibull shape parameter, some use 
standard deviations in strength, and 
some use lognormal distributions. 
Additionally, there is the provision 
(sometimes applied, sometimes not) 
of different models for contact and 
bending, and also for conditions 
above and below the endurance limit. 

Nonetheless, it is useful to see all 
the different reference data in one 
place. Much of this has been taken 
from the Gear Solutions paper by Dr. 
Hein et al., (Ref. 8) from February 
2020, but more have been added 
from other sources. 

One clear difficulty in compar-
ing these values comes from the 
fact that they are presented in dif-
ferent forms. By presenting the val-
ues in the form of a Weibull shape 
parameter, the results directly give 
a variation in failure against time. 
By presenting a standard deviation 

Reference (and date) Contact Bending

Gleason (1965) [Ref. 9] s.d.=23% (inferred from graph of S-N curves)

Stahl (1999) [Ref. 10] Limited Life: b=3.2 Limited Life: lognormal 
slog= 0.06–0.13

Endurance: s.d.=3.5% Endurance: 3.4% peened; 
6.0% unpeened

Hofmann (2003) [Ref. 11] s.d.=3.0%

Bertsche and Lechner 
(2004) [Ref. 6]

b=1.1-1.5 b=1.2–2.2

AGMA (2004) [Ref. 12] s.d.=18% (inferred from table of reliability factors)

GE (2023) [5] b=0.5–6.0 

Table 1—Gear reliability data from a range of published sources. 
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in strength, the source is indicat-
ing a normal distribution in strength 
which indirectly implies a variation 
in failure against time 

Converting Reliability 
Guidelines into a Common 
Format and Comparing Them
To make sense of these values, they 
need to be converted to a “common 
currency,” and within this study, it 
was decided to convert to Weibull 
shape parameter. The approach 
taken by Hexagon contained several 
assumptions, and whilst alternative 
assumptions could have been made, 
Hexagon does not believe that they 
would affect the overall outcome of 
the study. 

First, the data for the standard devi-
ation in strength was converted to an 
equivalent Weibull shape parame-
ter. A graphical representation can be 
seen in Figure 2. The S-N curve from 
the standards (ISO and AGMA) refers 
to the 1 percent failure rate. Assuming 
a normal distribution and using the 
standard deviation in strength, a dis-
tribution in strength can be implied. 

A hypothetical population of gears 
with this distribution in strength 
was generated numerically, and their 
resulting failure points were calcu-
lated. The limited life part of the S-N 
curve for contact for case-carburized 
gears was used. This was because case 
carburized gears are most common, 
contact failures are more common than 
bending failures and the greatest num-
ber of gear fatigue tests have focused 
on this part of the S-N curve, owing to 
the greater ease in achieving failures. 

Figure 3 shows the data arising 
from the FZG data for the full set of 
data. This shows that a normal distri-
bution in strength, projected onto the 
time axis using the S-N curve of ISO 
6336, does not give a perfect Weibull 
distribution. This pattern was also 
seen for all the other values used. 

It was decided to concentrate on 
the earlier sections of the popula-
tion, since it is unlikely that a com-
plete population of gears would be 
allowed to fail in service. By concen-
trating on the first 50 percent of fail-
ures, a closer match to Weibull could 
be achieved and a clearer value for b. 

Figure 2—Graphical illustration of the conversion between a distribution 
in strength to a distribution in life.

Figure 3—Derivation of equivalent Weibull shape parameter using the data from Stahl (Ref. 10), 
for the whole population.

Figure 4—Derivation of equivalent Weibull shape parameter using the data from Stahl (Ref. 10), 
for the first 50 percent of the population.
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At this point, a “sense check” can 
be made. Given a standard devia-
tion of 3.5 percent of the mean and 
2.326 standard deviations between 
the mean (50 percent failure) and 
1 percent failure, this means that 
the mean strength of the popula-
tion (and hence the gear that pro-
vides the point that crosses the 50 

percent point on the y axis) is 8.14 
percent higher than the strength 
of the gear that sits at y=1 per-
cent. Using the slope of the S-N 
curve for contact from ISO (13.22) 
this indicates that the mean life 
should be approximately 3.0 times 
the life for 1 percent. Inspection of 
the graph indicates that the results 

(5.5e6 cycles for 1 percent; 1.6e7 
cycles for 50 percent) match what 
is expected. 

The corresponding analysis using 
the data from AGMA (Ref. 12) and 
Gleason (Ref. 9) can be seen in Figure 
5 and Figure 6 respectively. 

Thus, we can take Table 2 and 
complete it with values that allow 
comparison on a like-for-like basis, 
at least for Contact. 

Understanding the Varying 
Guidelines in Gear Reliability
So, we end up with a wide range of 
different values for b, starting with 
0.85 for Gleason (Ref. 9), 1.06 for 
AGMA (Ref. 12), 1.1 from Bertsche 
and Lechner (Ref. 6), extending up 
to 4.9 from Stahl (Ref. 10) and as 
high as 6.0 from GE (Ref. 5). This 
is an extraordinary range. It is not 
just an aspect of “academic inter-
est”—if a design engineer has a 
system for which the reliability 
needs to be calculated, the big-
gest impact on the result will not 
be the use of AGMA or ISO, or the 
method for calculating misalign-
ment, or how KHBeta is calculated; 
The single main determining fac-
tor affecting the reliability result 
becomes which data a given engi-
neer choses in order to extrapolate 
from the predicted life for the 1 
percent failure rate to the pre-
dicted reliability of the population. 

This can be illustrated in Figure 
7, where the same nominal life for 

Table 2—Gear reliability data from a range of 
published sources, converted to equivalent 
Weibull shape parameters (b), for contact.

Reference	
(and date)

Value of b for 
Contact

Gleason (1965) 
[Ref. 9]

0.85

Stahl (1999) 
[Ref. 10]

Limited Life=3.2

Endurance=4.95

Hofmann (2003) 
[Ref. 11]

5.7

Bertsche and 
Lechner (2004) 

[Ref. 6]

1.1–1.5

AGMA (2004) 
[Ref. 12]

1.06

GE (2023) 
[Ref. 5]

0.5–6.0

Figure 5—Derivation of equivalent Weibull shape parameter using the data from AGMA (Ref. 
12), for the first 50 percent of the population.

Figure 6—Derivation of equivalent Weibull shape parameter using the data from Gleason (Ref. 
9) for the first 50 percent of the population.
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1 percent is used and the reliabil-
ity of the population is predicted 
using the various values of b derived 
from the various public sources. The 
problem with the lower values of b 
is clear—there is an enormous vari-
ation across the population. For 
the FZG data, the 80 percent failure 
point (20 percent reliability) is only 
~3 times the 1 percent failure point, 
but for AGMA it is ~120 times, and 
for Gleason it is ~400 times. 

Consider the implications of using 
the AGMA and Gleason data. If the 
purpose of the calculation is to pre-
dict when a gear will fail, the result 
becomes so uncertain that realisti-
cally no insight is possible, and the 
calculation is essentially meaning-
less. If the purpose is to check 
observed failure rates against pre-
dicted failure rates, the net ends up 
being cast so wide that pretty much 
‘any’ observed outcome could be said 
to correlate with one or other of the 
quoted reliability models. 

Another problem arises when 
using some of the data (Ref. 10) in 
that different behavior is described 
above and below the endurance 
limit. This may accurately reflect 
the results derived from the test-
ing of gears in laboratory condi-
tions, where each gear is subject to 
constant loading which is targeted 
to be in either limited life or high 
cycle regimes. However, if a gear is 
subject to in-service loading that 
includes both high cycle and limited 

Figure 7—Representative plot of the reliability of a 
whole population of gears using different values for the 
Weibull shape parameter.

life regimes, how is this to be con-
sidered? What happens if we have a 
mix of 80 percent/20 percent, 20 per-
cent/80 percent, 60 percent/40 per-
cent? If we have a loading that is 
just above the endurance limit for 
1 percent of the population, do we 
assume it to be below the endurance 
limit (and this requires a different 
reliability model) for the remaining 
99 percent of the population?

The result of this wide variation in 
results (and the subsequent uncer-
tainty regarding differing behav-
ior above and below the endurance 
limit) means that engineers tend 
to take the relatively comfortable 
approach of predicting “indicative” 
reliability, saying something “is as 
durable/reliable as the last design we 
did.” However, if this is the case then 
CAE in general is profoundly guilty 
of what could be described as “over-
promising and under-delivering.” 
The promise has always been that 
product performance can be pre-
dicted so that failure modes can be 
understood, and “quantified trade-
offs” carried out with confidence. 
In the case of gear reliability, these 
trade-offs would include:
•	 How will my failure rate increase 

(Δ percent) if I decrease my 
center distance (Δ mm), thereby 
saving weight and material?

•	 What are the chances that the 
gearbox will fail if I run it for 
another 1,000 hours? 

Instead, design engineers tend to 
approach these considerations more 
in the form of:
•	 If we go below center distance 

“X” we will exceed the safety 
factor that we have typically used 
for this application

•	 Whilst some of our gearboxes 
have continued to be used 
beyond this point, we do not 
have enough confidence to know 
whether this is suitable 

This raises two questions:
•	 Why has this happened?
•	 What should we do about it? 

How Did This Variability Arise?
By reflecting on its work with dif-
ferent companies and research 
organizations over the last 30 years 
in different industries, Hexagon 
believes there are two reasons for this 
range of values, and that understand-
ing these can help indicate what the 
best solution is moving forward. 

The first thing to recognize is 
that, to a certain extent, variability 
has dropped (and values of b have 
improved) over time. The Gleason 
data (Ref. 9) is from 1965 whereas the 
higher values are more recent. It is to 
be expected that over time the clean-
liness of steels and the quality con-
trol of the manufacturing processes 
(heat treatment, grit blasting, shot 
peening, etc.) has improved, leading 
to a reduction in the variability of 
the strength as well as an improve-
ment in overall strength. Certain 
academics have also suggested this 
as an observation (Ref. 11).

The other aspect is to look at where 
these values were derived from. In 
some instances (Refs. 10, 11), the 
data comes from test programs from 
university laboratories, where care-
fully designed test rigs with high 
levels of stiffness and alignment 
are used to test gears that are care-
fully manufactured and inspected, 
using consistent and carefully moni-
tored loads. The cycles to failure of 
each gear would have been carefully 
recorded. Therefore, the variability 
of the gear lives could be put down 
to variations in the material proper-
ties alone. 
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In other instances (Refs. 5, 6), the 
values would have been based on 
observations from in-service gears. 
In these instances, many more fac-
tors affect gear reliability which is 
unlikely to have been measured. 

Housing stiffness has been known 
to affect gear misalignment and 
hence gear stress for many years 
(Ref. 3), however, such studies may 
well not have been able to account 
for this factor, and in any case pro-
duction gearbox housings are sub-
ject to variations in wall thick-
ness and this will not have been 
accounted for. 

Gear microgeometry is known to 
affect gear stress and hence dura-
bility, and most design engineers 
account for this by using the nom-
inal (target) microgeometry for 
their prediction of gear durability. 
However, variations from the nomi-
nal exist, and while it is possible to 
measure gear geometry and import 
the actual tooth profile for use in the 
stress calculation (Ref. 13), it is rea-
sonable to assume that these influ-
ences were also not included.

Thus, we see that whilst the val-
ues arising from university laborato-
ries account for the variation in gear 
material strength alone, other val-
ues account for a much wider set of 
variables, factors that are known to 
affect gear durability but are unlikely 
to have been known for any given 
failed gear. These include:

•	 Gear microgeometry variations
•	 Gear misalignment variations, 

owing to variations in housing 
stiffness and gear alignment 
tolerances

•	 Variations in loading
•	 Potential for inconsistent 

lubrication, lubricant 
degradation, water ingress, etc. 

During the execution of this digi-
tal twin work, Hexagon was able to 
acquire usage data from many vehi-
cles that were subject to nominally 
identical operating environments. A 
study (Ref. 4) was carried out, focus-
ing on bearings (bearings were cho-
sen because these were found to be 
the components most likely to fail) 
to account for the impact of not 
knowing the loading conditions if 
the Weibull analysis were to be per-
formed to determine the reliability 
of bearings. 

This study showed that, no mat-
ter how high the actual value of b 
is for the bearings (i.e., a predict-
able failure), if the failure analysis 
is carried out against time and not 
damage, the study would deduce 
a much lower value of b (i.e., an 
unpredictable failure). This shows 
how the failure to include in analy-
sis factors that substantially affect 
a component/system can lead to the 
incorrect conclusion that the com-
ponent/system’s reliability is pro-
foundly unpredictable. 

Figure 8 gives a graphical repre-
sentation of what Hexagon believes 
is happening for gears, and where 
the variation in values of b comes 
from. Variability in material strength 
alone may well correspond to a 
b of ~5.0, and a quite “peaky” dis-
tribution in reliability, but when 
unknown factors are included, this 
distribution gets flattened, so that 
when many significant factors are 
left unaccounted for, the observer is 
left with what appears to be a pro-
foundly unpredictable system.

In this situation, it is unsurprising 
that design engineers will err on the 
side of caution, basing new designs 
on old design practices rather than 
seeking optimum designs with full 
confidence in quantifiable trade-offs. 

How Should This Data Be Used?
This insight indicates how to move 
forward with future developments. 
Reliability predictions must start 
somewhere, and the best indication 
is that the variability indicated by 
the university studies (Refs. 10, 11) 
properly identify the variability of 
strength of modern gear materials. 
This gives an “upper limit” on the 
predictability of in-service applica-
tions since it is not possible for any 
production gearbox to be as tightly 
controlled, or to have as much data 
as a research laboratory, in terms of 
manufacturing, inspection, assem-
bly, and loading. 

Figure 8—Illustration of how the inclusion/exclusion of various factors in a reliability analysis affects the resulting value of b.
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This paper has shown how various 
influences that affect the durability 
of gearboxes push the observed fail-
ure rate towards randomness if they 
are not accounted for, and in effect, 
this determines what data should 
be used in the prediction of gear-
box reliability. Load spectrum, gear 
geometry, and gear alignment are all 
examples of these influences.

Therefore, if any of these factors are 
known, or are tightly controlled, then 
there will be less scatter imparted on 
the life of the gearbox components, 
and a higher value of b can be used. If 
these factors are not known, or they 
are poorly controlled, then a lower 
value of b should be used. 

Broadly speaking, any predic-
tion of reliability must account for 
as many of the variables that affect 
reliability as possible. When work-
ing on Failure Mode Avoidance, Tim 
Davis (Ref. 14) extended the work 
of Taguchi, Miscke, and Phadke to 
take signal factors and noise factors 
into account (see Figure 9). In this 

instance, there is a danger that if 
the signal-to-noise ratio decreases, 
it becomes difficult to achieve the 
ideal function of the system, and 
error states occur. 

The analogy for gearboxes is 
clear—the ideal function is reliable 
operation and component failure is 
an error state. Hexagon’s digital twin 
work has shown how vehicle usage 
can be a noise but with the correct 
setup can be converted to a signal 
factor. Put another way, it is con-
verted from an unknown to a known. 

Within the framework of this digi-
tal twin, Hexagon has sought to con-
vert one major factor (load spec-
trum) from an unknown to a known, 
from a noise to a signal factor. In the 
absence of reasons to the contrary, 
the digital twin uses the recommen-
dations from Stahl (Ref. 10) from the 
limited life for all loads, with differ-
ent models for contact and bending. 
Furthermore, any Weibull analysis 
of failed gearboxes should provide 
decent clarity regarding the behav-
ior of the population as a whole. 

On the other hand, if the load spec-
trum is assumed and not measured, 
the analysis carried out by Hexagon 
implies that a very different approach 
to reliability should be considered, 
for example, Bertsche and Lechner 
(Ref. 6). In this case, it is unlikely that 
a Weibull analysis of failed gearboxes 
will provide credible insight into the 
reasons for such failures.

Nonetheless, the digital twin, 
with the ability to record the load 
spectrum for every gearbox, pro-
vides the framework for the future 
of reliability engineering of gear-
boxes. Hexagon is working with a 
number of companies that are rou-
tinely harvesting vehicle usage data 
from substantial quantities of their 
vehicles. By feeding this data into 
best-practice CAE tools, unprece-
dented accuracy can be achieved in 
the prediction of component and 
system reliability.

However, more could be achieved. 
As it stands, there would still be 
assumptions that could be improved 
upon. For example, every OEM has 
values for the allowable bending 
and contact stresses of its materials. 
These values substantially affect any 
predictions of reliability, yet even 
though they are affected by a com-
pany’s suppliers, machining, heat 
treatment, and quality control, often 
the ‘reference’ data from ISO 6336 
Part 5 is used. 

With the cost of data acquisi-
tion plummeting, Hexagon believes 
we will start to see large-scale data 
acquisition and failure recording. 
When combined in a disciplined man-
ner, this would yield unprecedented 
insight into the durability and reli-
ability of gearbox systems, an insight 
that could be fed back to engineers 
for reuse in the design of the next 
generation of vehicles. Effectively, a 

Figure 9—The p-diagram to describe an 
engineering system or component (Ref. 14).

Figure 10—An illustration of the complete digital thread for gears.
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“digital thread” as shown in Figure 
10, would be complete. This is one of 
the ambitions of Nexus.

This paper talks about digi-
tal twins, but there are other fash-
ionable terms, too. The internet of 
things (IoT), big data, and AI are 
often discussed, yet it is not always 
clear how they will deliver benefits. 
The proposal for data acquisition, 
failure recording, and correlation 
is an example of how such fash-
ionable ideas can be applied in an 
achievable manner to gearbox engi-
neering to deliver benefits in terms 
of reduced cost, reduced risk, faster 
development times, reduced mate-
rial usage, longer gearbox life, and 
improved sustainability. 

Hexagon does not propose dis-
carding the wealth of knowledge that 
is encapsulated in standards such as 
ISO 6336, but rather building upon 
these standards and refining them 
based on the evidence provided by 
the usage and failure patterns iden-
tified in each application. Some 
major OEMs already make changes 
to the standards for their benefit and 
based on their data, thereby giving 
them a commercial advantage. This 
is set to accelerate massively. 

Further comparisons are intrigu-
ing. Stahl’s data (Ref. 8) was based 
on 509 gear tests. Soon, Hexagon’s 
Digital Twin will be extended to 
cover more than 10,000 gearboxes, 
each with more than 10 gears, each 
one effectively an individual test 
sample since its usage profile will be 
monitored throughout its life. 

On one hand, Stahl’s data is more 
useful since it is available today, 
and all 509 gears are assumed to 
have failed and contributed to the 
statistical analysis, whereas the 
vast majority of the 100,000+ gears 
under study in the digital twin will 
not fail. Additionally, even the early 
failures are not expected for a con-
siderable period. 

However, the failure analysis aris-
ing from such a digital twin would 
be focused on a specific application, 
a specific supply chain, a specific 

production line with its heat treat-
ment, lubricant selection, etc. 
Furthermore, over time the num-
ber of gearboxes under study will 
expand another one or two orders 
of magnitude (perhaps more), and 
the failure data will start to stack 
up. When this happens the statisti-
cal significance of the data arising 
from such a process, and hence its 
validity and accuracy, will start to 
dwarf that available from the uni-
versity research programs that have 
supplied it to date. All of this will 
deliver a clear benefit to industry, 
to the users of such vehicles, and to 
the economy and environment. 

Stahl’s data is already 24 years old. 
Compared to the alternatives, the time 
to results for the digital twin described 
here is probably not so onerous. 

Conclusion
The term digital twin has often been 
spoken about, but rarely has it been 
seen to be put into operation and to 
deliver value in practice. Likewise, 
terms such as IoT and big data may 
have delivered value when track-
ing people’s browsing habits and 
targeting advertising, but there has 
seemed to be little relevance to gear-
box engineering. 

Recent work by Hexagon shows 
that this is changing. In collabora-
tion with a world-renowned vehicle 
manufacturer, it has developed and 
put into service a cloud-based digital 
twin for a multispeed gearbox. This 
digital twin predicts gear and bear-
ing fatigue and reliability, account-
ing for all the same influences on 
component fatigue as are included 
in state-of-the-art design analysis, 
but in a process that runs automat-
ically, requiring no human interac-
tion or intervention.

In converting from durability 
(percentage damage, safety fac-
tor) to reliability (failure rate), data 
has been referenced from vari-
ous sources. However, these dif-
ferent sources have been shown to 
have widely varying values which, 
if used in the prediction of gearbox 

reliability, would lead to huge vari-
ations in the results depending on 
which reference was used. 

It has been argued that part of this 
variation is due to the passage of 
time, and part of it is due to the dif-
ference between research laboratory 
testing programs and observation 
from industrial usage patterns. The 
former tightly controls many of the 
factors that affect gear life (loading 
conditions, alignment, etc.) which 
are either assumed or left unknown 
in industrial applications. 

The key to useful gear reliability 
predictions is to maximize the sig-
nal-to-noise ratio, and in practice, 
this means measuring as many of 
the factors that affect gear life as 
possible. In the past, this has not 
been practical. However, due to 
recent developments, we are start-
ing to see large programs of data 
acquisitions by leading vehicle 
companies. In the short term, this 
work will use current reference data 
on reliability to predict when gear-
boxes are likely to fail; over time, 
once proportions of the gearbox 
population have actually failed, the 
observed failure rate can be com-
pared with the predicted failure rate 
and adjustments made. 

The future of gear reliability pre-
diction is starting to take shape. 
Manufacturers will be able to collect 
precise usage data on tens of thou-
sands, probably millions of gears, 
and match this against failure data. 
Even though the failure rates will be 
small, the number of samples will 
be statistically significant, and will 
eventually be orders of magnitude 
greater than the number of samples 
that have been used to derive cur-
rent reference data. Furthermore, 
each company’s data will be based 
on its application and production 
processes, rather than general gear 
applications. Rather than fresh 
attempts to rewrite gear analysis 
methods, these will be minor tweaks 
to the current gear rating standards 
but will provide vastly greater con-
fidence in the results.
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