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Management Summary
This paper introduces the basic fundamentals of 

proportional-integral-derivative (PID) control theory, 
and provides a brief overview of control theory and 
the characteristics of each of the PID control loops. 
Because the reader is not expected to have a back-
ground in control theory, only the basic fundamentals 
are covered. Several methods for tuning a PID control-
ler are given, along with some disadvantages and limita-
tions of this type of control. 

Introduction
The PID controller is a feedback mechanism widely used 

in a variety of applications. The controller calculates an “error” 
that is the difference between a measured process variable 
and the desired set-point value needed by the application. 
PID controllers will attempt to minimize the process error by 
continually adjusting the inputs. Although this is a powerful 
tool, the controllers must be correctly tuned if they are to be 
effective. Additionally, the limitations of a PID controller 
should be recognized in order to ensure that they are not used 
in applications that cannot make use of their unique advan-
tages. This article covers the basics of PID controllers, as well 
as several methods for tuning them. 

The most common question asked about the topic of 
PID controllers is, “Why learn to tune them?” The answer is 
simple. PID controllers are literally everywhere in industrial 
applications. For many applications, PID controllers are the 
optimum choice and will simply outperform almost any other 
control option. This is why they are currently used in over 
95% of closed-loop processes worldwide (Ref. 1), govern-
ing everything from temperatures, flow rates, mixing rates, 
chemical compositions and pressures in a limitless number of 
applications. PID controllers can also be tuned by operators 
who do not possess a strong background in differential equa-
tions, electrical engineering or modern control theory; this 
grants PID controllers a very powerful ability to drastically 
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(2c)

Thus, the PID algorithm from Equation 1 can be rewrit-
ten in its final form as:

	 (3)

As may be seen, there are quite a few options here for 
tuning the controller. Each of the characteristics of the three 
loops is discussed below. 

Proportional (gain) loop. The purpose of the proportional 
gain is to create a change to the system’s output that is directly 
proportional to the system’s current error value. Stated anoth-
er way, a gain can be thought of as an amplifier to the control-
ler, as it only serves to multiply the current error value by a 
given gain value. A large gain value will yield a large change 
in a system’s output for a given error, and thus gain can be 
used to amplify the speed with which a controller reacts to a 
certain state condition. However, if the gain is too large, the 
system can become unstable very quickly; conversely, if the 
gain value is too small, the controller will have a subsequently 
small response to an error value. This latter condition will 
result in a less-sensitive controller, which may not respond 
correctly to errors or disturbances. 

In an ideal state—i.e., free of any disturbances—a purely 
proportional control system will not settle at the set-point 
value, but will retain a steady error that is a function of the 
proportional and process gain. However, despite the presence 
of the steady-state offset, it is common practice to design 
control systems wherein the greatest amount of control 
response is provided by the controller’s proportional gain. An 
example of this steady-state error is shown in Figure 1.

Integral (reset) loop. The value contributed from the inte-
gral loop is proportional to both the magnitude and duration 
of the error. Summing the recent error values over time (inte-
grating the error) gives the offset value that should have been 
previously corrected. This accumulated-error value is then 
multiplied by the integral gain (which defines the magnitude 
of the contribution of the integral loop) and added to the 
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change a given process (called a “plant model”) with a system 
that is very simple and robust. 

Basics of Control Theory
A common example of a control system is a person 

adjusting the temperature of water coming from a faucet. 
This involves the mixing of two process streams—hot and 
cold water—which is followed by a person touching the 
water stream, measuring the process variable to gauge its 
temperature. Based upon this feedback, the person adjusts the 
amount of hot or cold water fed into the faucet until a desired 
temperature—the set-point value—is reached. However, this 
set-point value isn’t reached immediately; there is usually an 
error value (e) between the measurement of the process vari-
able and its set-point value. By measuring the process variable 
and calculating the error, the person will decide to change 
the positions of the hot and cold valves—the measured 
variables—by a certain amount until the water temperature 
resolves to its set-point value. 

If the person only adjusts the position of the hot water 
valve, this is an example of proportional control. If the hot 
water does not arrive quickly enough, the person may open 
the hot water valve by an increasing amount as time goes 
by; this is an example of an integral control. By only using 
the proportional and integral methods (a PI controller), the 
water is likely to oscillate wildly between too hot and too cold 
because the valves are being adjusted too quickly and the pro-
cess is overshooting the set-point. In order to dampen future 
oscillations, the person may wish to adjust the positions of the 
water valves more gradually, leading to a derivative control 
method. 

This simple example is a wonderful demonstration of how 
a PID works. A PID controller involves three separate system 
parameters:

•	 Proportional (sometimes called the “gain”): 
	 determines the reaction to the current error
•	 Integral: calculates the system reaction based on 
	 the sum of recent errors
•	 Derivative: calculates the rate at which the system
 	 error has been changing 
The weighted sum of these three values is used to adjust 

a process by adjusting a control element, which could literally 
be nearly anything within the process. For instance, flow rates 
into or out of a mixing tank could be controlled through the 
position of a valve (as with the tap water example), or the 
output of a heating element could be controlled via its power 
supply. These three summed terms constitute the measured 
variable, i.e.—the aspect of the application that one is trying 
to manipulate: 

	 (1)

Where:
Pout, Iout, and Dout are the output contributions of each of 

the three PID parameters. These three outputs are given by 
their respective parameter loops, which are:
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Simulated response to a step input
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Figure 1—Proportional response to step input. Note the presence 
of a steady-state error value. (Image copyright Carnegie Mellon 
University)
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controller output. When added to the proportional term, the 
integral loop accelerates the response of the process towards 
the set-point value and eliminates the residual steady-state 
error of a proportional-only controller. The integral loop is 
only responding to the summation of recent errors, however, 
which will cause the response to overshoot the set-point value 
and thus create an error in the opposite direction. Left alone, 
this PI controller may eventually settle on the set-point value 
over time, but there are many applications—such as stability 
control systems in aircraft—where rapidly settling upon the 
set-point value without oscillation is both desirable and nec-
essary. Figure 2 shows the effects of adding an integral loop to 
a proportional controller. Note how changing the value of the 
integral gain affects the response of the system. Although a PI 
controller will not resolve to a steady-state error (as a propor-
tional-only will), the amount of overshoot is directly related 
to the value of the integral gain. Notice in Figure 2 that the 
highest value of integral gain gave the fastest response to the 
step input (as evidenced by the steep slope of Ki = 2, relative 
to the other values), but also required the most amount of 
oscillations and the longest amount of time to resolve to the 
set-point value. By contrast, the red line of Ki = 0.5 has the 
slowest response time of the three options, but notice that it 
resolves to the set-point value with no noticeable overshoot. 
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Figure 2—Controller response to step input with proportional and 
derivative values held constant. (Image copyright Wikipedia)

Figure 3— Controller response to step input with proportional and 
integral values held constant. (Image copyright Wikipedia)

Which response is “best” for a given application will of course 
depend on the application in question, but it is common 
practice to limit the number of response oscillations while still 
maintaining an acceptable response time. This is also done via 
the derivative gain, as discussed below.

Derivative (rate) loop. With a PI control, the system 
is able to settle to its set-point value through the use of a 
steady-state proportional response and the summation of past 
errors. But how fast have those previous errors been chang-
ing with respect to time? In Figure 2, the rate at which the 
errors change is relatively constant—especially with Ki equal 
to 2. To increase response time and minimize errors, a term is 
needed to calculate the rate at which the error term is chang-
ing. This is done through a derivative loop, sometimes called 
a “rate loop.” 

The derivative loop calculates the rate at which the error 
is changing by calculating the slope of the error. In essence, 
this is done by calculating the change in error (rise) over time 
(run)—the first derivative of the error function. This value is 
multiplied by a derivative gain Kd to obtain the derivative con-
tribution to the system. As with the proportional and integral 
loops, the derivative gain can have a great impact on the sys-
tem’s response (Fig. 3). The derivative loop controls the rate 
at which the controller’s response overshoots a given input 
value—produced by the  proportional and integral loops—
and is most noticeable when the process variable is close to 
the set-point. However, derivative loops amplify noise and are 
thus very sensitive to noise in the error term. For this reason, 
it is best to use attenuation filters with derivative loops, lest 
the presence of noise combined with a high value of deriva-
tive gain drive the system to instability. Note in Figure 3 that 
the behavior of the derivative term relative to its gain is the 
direct opposite of the integral term’s response to an identical 
gain value.

Loop Tuning
Tuning a PID controller involves the control of four 

variables: 

•	 Rise time: the amount of time necessary for the 
	 system’s initial output to rise past 90% of its 
	 desired value 
•	 Overshoot: the amount by which the initial 
	 response exceeds the set-point value 
•	 Resolving time: the amount of time required by 
	 the system to converge to the set-point value.
•	 Steady-state error: the measured difference 
	 between the system output and the set-point value

The goal of a PID controller is to take an input value and 
maintain it at a given set-point over time. But if the values 
for the three loops of a PID controller are chosen incor-
rectly, the system will become unstable through any one of a 
number of failure modes. Typically, these involve an output 
that diverges—with or without oscillation—and is limited 
by the physical characteristics of the control mechanisms, 
including actuators breaking, sensors and encoders burning 
out, etc. The process of tuning a controller involves adjusting 
its control parameters—proportional band, integral gain and 
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continued

derivative gain—in response to a given input until the desired 
response is attained. This desired response is almost entirely 
application-driven. For instance, a controller must not allow 
any overshoot or oscillation if such things would create a 
hazardous condition within the application (and would yield 
response graphs similar to the red line in Figure 2). Other 
applications are inherently non-linear, rendering parameters 
that are ideal at full-load and maximum-RPM conditions 
undesirable when starting from zero-load conditions.

There are, generally speaking, three main methods of tun-
ing a PID controller (Table 1).

The most important aspect to remember about control 
tuning is that it is a bit of an art form, requiring training and 
practice. Some knowledge of control theory is required—
which is why it was introduced earlier in this paper’s Basics 
of Control Theory section—as well as a systems-level under-
standing of the process in question. For instance, a large 
change in response to a small error results in a high-gain 
controller and leads to overshoot. Combining this with the 
oscillations introduced by an integral loop would result in the 
system oscillating about the set-point—rather than reaching 
it—with the system responding as a decaying, constant or 
increasing sinusoid. These determine the stability of the sys-
tem, i.e.—stable, marginally stable or unstable, respectively. 
Initially, this concept may be difficult to grasp, although 
we humans “tune” our own control processes automatically. 
Recalling the tap water example, the person is able to learn 
from past actions, and so does not have to “oscillate” around 
the desired temperature of the water because a human being 
is a form of adaptive controller. A simple PID controller, 

however, does not have this ability to learn from process his-
tory and thus must be tuned correctly. 

Before deciding on a tuning strategy, it is essential to 
understand how changing the gain, integral and derivative 
loops will affect the system as a whole. Table 2 shows the 
effects (Ref. 2) that tuning these loops independently have on 
the behavior of the system.

It should be noted that the philosophy of increasing 
derivative gain to increase system stability is a common belief, 
but real-world applications may behave in a fashion contrary 
to this assumption if there is a transport delay present (Ref. 
3). This may lead some users to exclude the derivative term 
entirely from their control system, thus denying themselves a 
powerful tool in the design of their control system. 

Manual tuning. Manual tuning is best used when a sys-
tem must remain online during the tuning process. The four-
step process is as follows: 

•	 Set Ki and Kd to zero
•	 Increase Kp until the loop output begins to oscillate
•	 Reduce Kp to one-half of this value to obtain a 
	 quarter-wave decay
•	 Increase Ki to adjust the behavior of the offset so 
	 that the system will resolve in an acceptable amount 
	 of time (how much resolving time is acceptable will 
	 be governed by the process in question) 
Note that increasing the integral gain by too great an 

amount will cause system instability  (Table 2). The deriva-
tive gain should then be adjusted until the system resolves to 
its set-point value with acceptable alacrity after experiencing 

Manual 

Ziegler-Nichols 

Software 

Table 1—Three Typical Methods for Tuning a PID Controller.

Method Advantages Disadvantages

Consistent tuning options available;
multiple valve and sensor inputs 

can be simulated and tested before
applying to application

Acquisition costs of software
(such as MATLAB) can be

prohibitive for some organizations;
software training required

Some process upsetting 
involved; can be a 

very aggressive tuning method

Requires experience
in controll tuning

No math required;
online options available

Proven method;
online options available

Table 2—Effects of PID Tuning on System.
Variable
Change

Rise Time Overshoot Resolving Time Steady-State Error
Change

System Stability

Increase Kp Decrease Increase Small Decrease Decrease Decrease

Increase Ki Small Decrease Increase Increase Large Increase Decrease

Increase Kd Small Decrease Decrease Decrease Minor effect Increase for small 
values of Kd

Decrease Kp Increase Decrease Small Increase Increase Increase

Decrease Ki Small Decrease Decrease Decrease Large Decrease Increase
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Table 4—Ziegler-Nichols Turning Values:
Reaction Curve Method.

Controller Type Kp Ki Kd

P - -

PI 0.9 0.27 -

PID 1.2 0.6 0.6T

Table 3—Ziegler-Nichols Turning Values.
Control Type Kp Ki Kd

P 0.5 Ku
- -

PI 0.45 Ku

-

PID 0.6 Ku

a load disturbance. This is simulated with a step doublet or 
“stick rap”—a step input from 0 to one, followed by a step 
input from one to 0—or with the sinusoidal or ramp input 
equivalents. Note that a fast PID loop will usually require a 
slight overshoot to resolve to the set-point more quickly. But 
if the system cannot accept an overshoot, an over-damped 
system will be required. In these instances the Kp value will 
be less than half of the value causing oscillation. 

Ziegler-Nichols tuning. The Ziegler-Nichols tuning 
method is a very powerful way to resolve a system to its 
set-point value while circumventing a great deal of the math-
ematical calculations required to find an initial estimation 
of the PID values. This is especially useful when the system 
is unknown or when creating state matrices for the system 
is impractical or impossible. As with manual tuning, with 
Ziegler-Nichols tuning the integral and derivative gain values 
are first set to zero. The proportional gain is then increased 
from zero until the system reaches an oscillatory state, as 
above. This proportional gain value should be marked Ku, 
or ultimate gain. The system’s oscillatory period at this gain 
value should also be marked Tu, or ultimate period. These two 
ultimate values are then used to set the proportional, integral 
and derivative gain values (Table 3; Ref. 4). 

There are, however, limitations to Ziegler-Nichols tun-

ing. It will permit some fluctuation in the controller response 
as long as each successive oscillation peak is no more than 
one-fourth the amplitude of the previous peak (Ref. 5)—or, 
the so-called, “quarter-wave decay.” Applications requiring 
less fluctuation or a faster resolving time will require further 
tuning.

A second Ziegler-Nichols tuning method is used for plant 
models with step responses resembling an S-shaped curve (or 
“reaction curve”), with no overshoot. This is ideally suited 
for processes that cannot tolerate overshoot or oscillations. A 
typical reaction curve is shown in Figure 4. The delay time L 
and constant time T are found by drawing a tangent line to 

the reaction curve through its inflection point                 and 
finding the intersection points with the time axis and the set-
point line. Once these intercepts are determined, the values 
from Table 3 are recalculated (Table 4; Ref. 6).

The parameters in Table 4 will give a system response 
with an overshoot of approximately 25%, and the system will 
resolve to the set-point value within polynomial time (Ref. 7). 

Software tuning. As it has with most other aspects of 
life, technology has rendered a great many number of control 
tuning methods irrelevant. A very large number of modern 
facilities forego tuning their controllers using the manual 
calculation methods mentioned previously. Rather, tuning 
and optimization software are used to ensure that optimum 
results are obtained in short order. Of course, for some sys-
tems—such as those with response times measured in min-
utes or hours—mathematical tuning is still recommended, as 
tuning by pure trial-and-error can literally take hours or days. 
MATLAB and SimuLink are the most common tools used to 
design and tune control systems, and they have found wide-
spread use in a variety of industries. Other software packages 
such as PIDeasy, AdvaControl Tuner, IMCTune and others can 
often produce optimal responses from either online or offline 
inputs, and are plug-and-play ready—often with no need 
of subsequent controller refinements. Many of the features 
of PID tuning software are also designed directly into the 
hardware of the controller, most often from the “Big Four” of 
control vendors—ABB, Honeywell, Foxboro and Yokogawa. 
Because of the number of variables involved in software tun-
ing, it is recommended that it be done on a case-by-case basis. 

Limitations of PID Control
Although a PID controller provides an optimum solu-

tion to many processes, it is not a panacea for all control 
problems that may be encountered. This is especially true 
for processes with ramp-style changes in set-point values or 
slow disturbances (Ref. 8). PID controllers can also perform 
poorly when the gain values must be greatly reduced in order 
to prevent a constant oscillation—or “hunting”—about the 
set-point value. Furthermore, PID controllers are linear 
and so care must be taken when using them with inher-
ently nonlinear systems—i.e., systems that do not satisfy the 
superposition principle or systems with an output that is not 
proportional to its input, such as air handling and mixing 
applications. 

For nonlinear systems, gain scheduling—where utilizing 
a family of linear controllers that are independently activated 
based upon the values of scheduling variables determines the 
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basic algebra, and offers results that are acceptable for the 
majority of applications. The Ziegler-Nichols method is also 
advantageous to use when the state properties of the system 
are unknown or in situations when the determination of these 
state properties is impossible or impractical. 

As mentioned, the Ziegler-Nichols method is not without 
its disadvantages. Systems that require a very fast rise time 
and/or zero overshoot require a response other than quarter-
wave decay, and as such cannot be tuned with the Ziegler-
Nichols methods. Ultimately, it is imperative that the user 
have a clear understanding of the requirements of the system, 
and to select the appropriate tuning method as it applies to 
their own, unique needs.
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current operating region of the system—is most often used. 
Which scheduling variables are used will depend on the sys-
tem in question. For example, a flight control system on an 
aircraft might use altitude and true airspeed as its scheduling 
variables, whereas an air handling application might use mass 
flow rate and impeller RPM. Nonlinear systems might be 
controllable with linear control systems if enough data and a 
sufficiently high sampling rate are known. Oftentimes, how-
ever, the use of gain scheduling may be more cost-effective. 

Feed-forward control is found in a number of applica-
tions, including perceptron (Ed.’s note: a binary classifier that 
maps its input x—a real-valued vector—to an output value f 
(x)—a single binary value—across the matrix) and long distance 
telephony (L-carrier transmission system of the 1970s). Feed-
forward control can also be used to improve the performance 
of a PID controller if certain qualities about the system are 
known beforehand and can be fed forward into the PID 
controller. This feed-forward value can greatly impact the 
performance of the controller; best of all, because feed-
forward input is not affected by the feedback of the system, 
the feed-forward value can never cause the control system 
to oscillate, thus improving controller response and overall 
system stability. 

Because the derivative loop is susceptible to process noise, 
it is also important to employ low-pass filters, if needed. 
However, the use of low-pass filters with derivative control 
can result in one filter negating the effect of another. For this 
reason, proper instrumentation or the use of a median filter 
may be a better option for improving both filter efficiency and 
overall performance of the controller (Ref. 9). Additionally, 
the differential loop can be turned off completely—Kd = 0—
thereby using the PID controller as a PI controller. Note that 
this may require retuning the proportional and integral loops 
by utilizing one of the methods discussed in the previous 
Loop Tuning section. 

Conclusion
PID controllers are a widespread control solution due 

to their simple architecture, generally acceptable control 
performance and ease of use. Unlike other control options, 
PID controllers do not require the user to have an extensive 
background in mathematics, control theory or electrical 
engineering to understand them. They are found in a wide 
variety of applications, and if properly tuned will outperform 
almost any other control option. It is in tuning the control-
lers that the greatest gains in performance may be found. A 
wide variety of tuning methods exist, although of the three 
discussed in this article, the Ziegler-Nichols method provides 
the most effective “quick- and-dirty” approach to tuning a 
controller. Software tuning has several advantages over the 
Ziegler-Nichols method, including the ability to run multiple 
iterations of tuning variables through process simulations to 
ensure optimum performance before the control logic of the 
process is updated. However, this type of tuning requires 
knowledge of the system’s state properties and extensive 
knowledge of the software in use, with the latter necessitat-
ing acquisition and training costs that the organization might 
not be able to justify. In contrast, the Ziegler-Nichols method 
requires very little training or specialized knowledge beyond 




