
 powertransmissionengineering april 2011 www.powertransmission.com26 powertransmissionengineering april 2011 www.powertransmission.com

Management Summary
This paper introduces the basic fundamentals of

proportional-integral-derivative (PID) control theory,
and provides a brief overview of control theory and
the characteristics of each of the PID control loops.
Because the reader is not expected to have a back-
ground in control theory, only the basic fundamentals
are covered. Several methods for tuning a PID control-
ler are given, along with some disadvantages and limita-
tions of this type of control.

Introduction
The PID controller is a feedback mechanism widely used

in a variety of applications. The controller calculates an “error”
that is the difference between a measured process variable
and the desired set-point value needed by the application.
PID controllers will attempt to minimize the process error by
continually adjusting the inputs. Although this is a powerful
tool, the controllers must be correctly tuned if they are to be
effective. Additionally, the limitations of a PID controller
should be recognized in order to ensure that they are not used
in applications that cannot make use of their unique advan-
tages. This article covers the basics of PID controllers, as well
as several methods for tuning them.

The most common question asked about the topic of
PID controllers is, “Why learn to tune them?” The answer is
simple. PID controllers are literally everywhere in industrial
applications. For many applications, PID controllers are the
optimum choice and will simply outperform almost any other
control option. This is why they are currently used in over
95% of closed-loop processes worldwide (Ref. 1), govern-
ing everything from temperatures, flow rates, mixing rates,
chemical compositions and pressures in a limitless number of
applications. PID controllers can also be tuned by operators
who do not possess a strong background in differential equa-
tions, electrical engineering or modern control theory; this
grants PID controllers a very powerful ability to drastically

Tuning a
PID Controller

Guillermo J. Costa

 Nomenclature

D
out	

=	 Derivative contribution parameter

e (t)	 =	 Error term with respect to time

I
out	

=	 Integral contribution parameter

K
d	

=	 Derivative gain

K
i	

=	 Integral gain

K
p	

=	 Proportional gain

K
u	

=	 Ultimate gain

L	 =	 Delay time, Ziegler-Nichols reaction curve
 	 	 	method

 P
out	 =	

Gain contribution parameter

T	 =	 Time constant, Ziegler-Nichols reaction 	
	 	 	curve method

T
u	

=	 Ultimate period

V
m
 (t)	 =	 Measured variable value with respect to 	

	 	 time

 powertransmissionengineering april 2011 www.powertransmission.com powertransmissionengineering april 2011 www.powertransmission.com www.powertransmission.com april 2011 powertransmissionengineering 27

	
(2c)

Thus, the PID algorithm from Equation 1 can be rewrit-
ten in its final form as:

	 (3)

As may be seen, there are quite a few options here for
tuning the controller. Each of the characteristics of the three
loops is discussed below.

Proportional (gain) loop. The purpose of the proportional
gain is to create a change to the system’s output that is directly
proportional to the system’s current error value. Stated anoth-
er way, a gain can be thought of as an amplifier to the control-
ler, as it only serves to multiply the current error value by a
given gain value. A large gain value will yield a large change
in a system’s output for a given error, and thus gain can be
used to amplify the speed with which a controller reacts to a
certain state condition. However, if the gain is too large, the
system can become unstable very quickly; conversely, if the
gain value is too small, the controller will have a subsequently
small response to an error value. This latter condition will
result in a less-sensitive controller, which may not respond
correctly to errors or disturbances.

In an ideal state—i.e., free of any disturbances—a purely
proportional control system will not settle at the set-point
value, but will retain a steady error that is a function of the
proportional and process gain. However, despite the presence
of the steady-state offset, it is common practice to design
control systems wherein the greatest amount of control
response is provided by the controller’s proportional gain. An
example of this steady-state error is shown in Figure 1.

Integral (reset) loop. The value contributed from the inte-
gral loop is proportional to both the magnitude and duration
of the error. Summing the recent error values over time (inte-
grating the error) gives the offset value that should have been
previously corrected. This accumulated-error value is then
multiplied by the integral gain (which defines the magnitude
of the contribution of the integral loop) and added to the

continued

change a given process (called a “plant model”) with a system
that is very simple and robust.

Basics of Control Theory
A common example of a control system is a person

adjusting the temperature of water coming from a faucet.
This involves the mixing of two process streams—hot and
cold water—which is followed by a person touching the
water stream, measuring the process variable to gauge its
temperature. Based upon this feedback, the person adjusts the
amount of hot or cold water fed into the faucet until a desired
temperature—the set-point value—is reached. However, this
set-point value isn’t reached immediately; there is usually an
error value (e) between the measurement of the process vari-
able and its set-point value. By measuring the process variable
and calculating the error, the person will decide to change
the positions of the hot and cold valves—the measured
variables—by a certain amount until the water temperature
resolves to its set-point value.

If the person only adjusts the position of the hot water
valve, this is an example of proportional control. If the hot
water does not arrive quickly enough, the person may open
the hot water valve by an increasing amount as time goes
by; this is an example of an integral control. By only using
the proportional and integral methods (a PI controller), the
water is likely to oscillate wildly between too hot and too cold
because the valves are being adjusted too quickly and the pro-
cess is overshooting the set-point. In order to dampen future
oscillations, the person may wish to adjust the positions of the
water valves more gradually, leading to a derivative control
method.

This simple example is a wonderful demonstration of how
a PID works. A PID controller involves three separate system
parameters:

•	 Proportional (sometimes called the “gain”):
	 determines the reaction to the current error
•	 Integral: calculates the system reaction based on
	 the sum of recent errors
•	 Derivative: calculates the rate at which the system
 	 error has been changing
The weighted sum of these three values is used to adjust

a process by adjusting a control element, which could literally
be nearly anything within the process. For instance, flow rates
into or out of a mixing tank could be controlled through the
position of a valve (as with the tap water example), or the
output of a heating element could be controlled via its power
supply. These three summed terms constitute the measured
variable, i.e.—the aspect of the application that one is trying
to manipulate:

	 (1)

Where:
Pout, Iout, and Dout are the output contributions of each of

the three PID parameters. These three outputs are given by
their respective parameter loops, which are:

	
(2a)

	 (2b)

 (1)

(2a)

(2b)

(2c)

(3)

V
m
 (t) = P

out
 + I

out
 +D

out

P
out

= K
p
e(t)

I
out

= K
i

e(t)dt

t
 ∫
o

V
m

(t)= K
p

e(t) + K
i

e(t)dt + Kd e(t)
t

∫
o

D
out

= K
d

e(t)

 d
dt

d
dt

 (1)

(2a)

(2b)

(2c)

(3)

V
m
 (t) = P

out
 + I

out
 +D

out

P
out

= K
p
e(t)

I
out

= K
i

e(t)dt

t
 ∫
o

V
m

(t)= K
p

e(t) + K
i

e(t)dt + Kd e(t)
t

∫
o

D
out

= K
d

e(t)

 d
dt

d
dt

 (1)

(2a)

(2b)

(2c)

(3)

V
m
 (t) = P

out
 + I

out
 +D

out

P
out

= K
p
e(t)

I
out

= K
i

e(t)dt

t
 ∫
o

V
m

(t)= K
p

e(t) + K
i

e(t)dt + Kd e(t)
t

∫
o

D
out

= K
d

e(t)

 d
dt

d
dt

 (1)

(2a)

(2b)

(2c)

(3)

V
m
 (t) = P

out
 + I

out
 +D

out

P
out

= K
p
e(t)

I
out

= K
i

e(t)dt

t
 ∫
o

V
m

(t)= K
p

e(t) + K
i

e(t)dt + Kd e(t)
t

∫
o

D
out

= K
d

e(t)

 d
dt

d
dt

 (1)

(2a)

(2b)

(2c)

(3)

V
m
 (t) = P

out
 + I

out
 +D

out

P
out

= K
p
e(t)

I
out

= K
i

e(t)dt

t
 ∫
o

V
m

(t)= K
p

e(t) + K
i

e(t)dt + Kd e(t)
t

∫
o

D
out

= K
d

e(t)

 d
dt

d
dt

Simulated response to a step input

Time (sec.)

Ba
ll p

os
itio

n (
m)

1.5

1

0.5

0
0 1 2 3 4 5

x 10-4

Figure 1—Proportional response to step input. Note the presence
of a steady-state error value. (Image copyright Carnegie Mellon
University)

 powertransmissionengineering april 2011 www.powertransmission.com28 powertransmissionengineering april 2011 www.powertransmission.com

controller output. When added to the proportional term, the
integral loop accelerates the response of the process towards
the set-point value and eliminates the residual steady-state
error of a proportional-only controller. The integral loop is
only responding to the summation of recent errors, however,
which will cause the response to overshoot the set-point value
and thus create an error in the opposite direction. Left alone,
this PI controller may eventually settle on the set-point value
over time, but there are many applications—such as stability
control systems in aircraft—where rapidly settling upon the
set-point value without oscillation is both desirable and nec-
essary. Figure 2 shows the effects of adding an integral loop to
a proportional controller. Note how changing the value of the
integral gain affects the response of the system. Although a PI
controller will not resolve to a steady-state error (as a propor-
tional-only will), the amount of overshoot is directly related
to the value of the integral gain. Notice in Figure 2 that the
highest value of integral gain gave the fastest response to the
step input (as evidenced by the steep slope of Ki = 2, relative
to the other values), but also required the most amount of
oscillations and the longest amount of time to resolve to the
set-point value. By contrast, the red line of Ki = 0.5 has the
slowest response time of the three options, but notice that it
resolves to the set-point value with no noticeable overshoot.

1.5

1

0.5

0

0 2 4 6 8 10 12 14 16 18 20

Ki = 2

Kp = 1 Ki = 1 Kd = 1

Ki = 0.5

1.5

1

0.5

0

Kp = 1 Ki = 1 Kd = 1

Kd = 2
Kd = 0.5

0 2 4 6 8 10 12 14 16 18 20

Figure 2—Controller response to step input with proportional and
derivative values held constant. (Image copyright Wikipedia)

Figure 3— Controller response to step input with proportional and
integral values held constant. (Image copyright Wikipedia)

Which response is “best” for a given application will of course
depend on the application in question, but it is common
practice to limit the number of response oscillations while still
maintaining an acceptable response time. This is also done via
the derivative gain, as discussed below.

Derivative (rate) loop. With a PI control, the system
is able to settle to its set-point value through the use of a
steady-state proportional response and the summation of past
errors. But how fast have those previous errors been chang-
ing with respect to time? In Figure 2, the rate at which the
errors change is relatively constant—especially with Ki equal
to 2. To increase response time and minimize errors, a term is
needed to calculate the rate at which the error term is chang-
ing. This is done through a derivative loop, sometimes called
a “rate loop.”

The derivative loop calculates the rate at which the error
is changing by calculating the slope of the error. In essence,
this is done by calculating the change in error (rise) over time
(run)—the first derivative of the error function. This value is
multiplied by a derivative gain Kd to obtain the derivative con-
tribution to the system. As with the proportional and integral
loops, the derivative gain can have a great impact on the sys-
tem’s response (Fig. 3). The derivative loop controls the rate
at which the controller’s response overshoots a given input
value—produced by the proportional and integral loops—
and is most noticeable when the process variable is close to
the set-point. However, derivative loops amplify noise and are
thus very sensitive to noise in the error term. For this reason,
it is best to use attenuation filters with derivative loops, lest
the presence of noise combined with a high value of deriva-
tive gain drive the system to instability. Note in Figure 3 that
the behavior of the derivative term relative to its gain is the
direct opposite of the integral term’s response to an identical
gain value.

Loop Tuning
Tuning a PID controller involves the control of four

variables:

•	 Rise time: the amount of time necessary for the
	 system’s initial output to rise past 90% of its
	 desired value
•	 Overshoot: the amount by which the initial
	 response exceeds the set-point value
•	 Resolving time: the amount of time required by
	 the system to converge to the set-point value.
•	 Steady-state error: the measured difference
	 between the system output and the set-point value

The goal of a PID controller is to take an input value and
maintain it at a given set-point over time. But if the values
for the three loops of a PID controller are chosen incor-
rectly, the system will become unstable through any one of a
number of failure modes. Typically, these involve an output
that diverges—with or without oscillation—and is limited
by the physical characteristics of the control mechanisms,
including actuators breaking, sensors and encoders burning
out, etc. The process of tuning a controller involves adjusting
its control parameters—proportional band, integral gain and

 powertransmissionengineering april 2011 www.powertransmission.com powertransmissionengineering april 2011 www.powertransmission.com www.powertransmission.com april 2011 powertransmissionengineering 29

continued

derivative gain—in response to a given input until the desired
response is attained. This desired response is almost entirely
application-driven. For instance, a controller must not allow
any overshoot or oscillation if such things would create a
hazardous condition within the application (and would yield
response graphs similar to the red line in Figure 2). Other
applications are inherently non-linear, rendering parameters
that are ideal at full-load and maximum-RPM conditions
undesirable when starting from zero-load conditions.

There are, generally speaking, three main methods of tun-
ing a PID controller (Table 1).

The most important aspect to remember about control
tuning is that it is a bit of an art form, requiring training and
practice. Some knowledge of control theory is required—
which is why it was introduced earlier in this paper’s Basics
of Control Theory section—as well as a systems-level under-
standing of the process in question. For instance, a large
change in response to a small error results in a high-gain
controller and leads to overshoot. Combining this with the
oscillations introduced by an integral loop would result in the
system oscillating about the set-point—rather than reaching
it—with the system responding as a decaying, constant or
increasing sinusoid. These determine the stability of the sys-
tem, i.e.—stable, marginally stable or unstable, respectively.
Initially, this concept may be difficult to grasp, although
we humans “tune” our own control processes automatically.
Recalling the tap water example, the person is able to learn
from past actions, and so does not have to “oscillate” around
the desired temperature of the water because a human being
is a form of adaptive controller. A simple PID controller,

however, does not have this ability to learn from process his-
tory and thus must be tuned correctly.

Before deciding on a tuning strategy, it is essential to
understand how changing the gain, integral and derivative
loops will affect the system as a whole. Table 2 shows the
effects (Ref. 2) that tuning these loops independently have on
the behavior of the system.

It should be noted that the philosophy of increasing
derivative gain to increase system stability is a common belief,
but real-world applications may behave in a fashion contrary
to this assumption if there is a transport delay present (Ref.
3). This may lead some users to exclude the derivative term
entirely from their control system, thus denying themselves a
powerful tool in the design of their control system.

Manual tuning. Manual tuning is best used when a sys-
tem must remain online during the tuning process. The four-
step process is as follows:

•	 Set Ki and Kd to zero
•	 Increase Kp until the loop output begins to oscillate
•	 Reduce Kp to one-half of this value to obtain a
	 quarter-wave decay
•	 Increase Ki to adjust the behavior of the offset so
	 that the system will resolve in an acceptable amount
	 of time (how much resolving time is acceptable will
	 be governed by the process in question)
Note that increasing the integral gain by too great an

amount will cause system instability (Table 2). The deriva-
tive gain should then be adjusted until the system resolves to
its set-point value with acceptable alacrity after experiencing

Manual

Ziegler-Nichols

Software

Table 1—Three Typical Methods for Tuning a PID Controller.

Method Advantages Disadvantages

Consistent tuning options available;
multiple valve and sensor inputs

can be simulated and tested before
applying to application

Acquisition costs of software
(such as MATLAB) can be

prohibitive for some organizations;
software training required

Some process upsetting
involved; can be a

very aggressive tuning method

Requires experience
in controll tuning

No math required;
online options available

Proven method;
online options available

Table 2—Effects of PID Tuning on System.
Variable
Change

Rise Time Overshoot Resolving Time Steady-State Error
Change

System Stability

Increase Kp Decrease Increase Small Decrease Decrease Decrease

Increase Ki Small Decrease Increase Increase Large Increase Decrease

Increase Kd Small Decrease Decrease Decrease Minor effect Increase for small
values of Kd

Decrease Kp Increase Decrease Small Increase Increase Increase

Decrease Ki Small Decrease Decrease Decrease Large Decrease Increase

 powertransmissionengineering april 2011 www.powertransmission.com30 powertransmissionengineering april 2011 www.powertransmission.com

Table 4—Ziegler-Nichols Turning Values:
Reaction Curve Method.

Controller Type Kp Ki Kd

P - -

PI 0.9 0.27 -

PID 1.2 0.6 0.6T

Table 3—Ziegler-Nichols Turning Values.
Control Type Kp Ki Kd

P 0.5 Ku
- -

PI 0.45 Ku

-

PID 0.6 Ku

a load disturbance. This is simulated with a step doublet or
“stick rap”—a step input from 0 to one, followed by a step
input from one to 0—or with the sinusoidal or ramp input
equivalents. Note that a fast PID loop will usually require a
slight overshoot to resolve to the set-point more quickly. But
if the system cannot accept an overshoot, an over-damped
system will be required. In these instances the Kp value will
be less than half of the value causing oscillation.

Ziegler-Nichols tuning. The Ziegler-Nichols tuning
method is a very powerful way to resolve a system to its
set-point value while circumventing a great deal of the math-
ematical calculations required to find an initial estimation
of the PID values. This is especially useful when the system
is unknown or when creating state matrices for the system
is impractical or impossible. As with manual tuning, with
Ziegler-Nichols tuning the integral and derivative gain values
are first set to zero. The proportional gain is then increased
from zero until the system reaches an oscillatory state, as
above. This proportional gain value should be marked Ku,
or ultimate gain. The system’s oscillatory period at this gain
value should also be marked Tu, or ultimate period. These two
ultimate values are then used to set the proportional, integral
and derivative gain values (Table 3; Ref. 4).

There are, however, limitations to Ziegler-Nichols tun-

ing. It will permit some fluctuation in the controller response
as long as each successive oscillation peak is no more than
one-fourth the amplitude of the previous peak (Ref. 5)—or,
the so-called, “quarter-wave decay.” Applications requiring
less fluctuation or a faster resolving time will require further
tuning.

A second Ziegler-Nichols tuning method is used for plant
models with step responses resembling an S-shaped curve (or
“reaction curve”), with no overshoot. This is ideally suited
for processes that cannot tolerate overshoot or oscillations. A
typical reaction curve is shown in Figure 4. The delay time L
and constant time T are found by drawing a tangent line to

the reaction curve through its inflection point and
finding the intersection points with the time axis and the set-
point line. Once these intercepts are determined, the values
from Table 3 are recalculated (Table 4; Ref. 6).

The parameters in Table 4 will give a system response
with an overshoot of approximately 25%, and the system will
resolve to the set-point value within polynomial time (Ref. 7).

Software tuning. As it has with most other aspects of
life, technology has rendered a great many number of control
tuning methods irrelevant. A very large number of modern
facilities forego tuning their controllers using the manual
calculation methods mentioned previously. Rather, tuning
and optimization software are used to ensure that optimum
results are obtained in short order. Of course, for some sys-
tems—such as those with response times measured in min-
utes or hours—mathematical tuning is still recommended, as
tuning by pure trial-and-error can literally take hours or days.
MATLAB and SimuLink are the most common tools used to
design and tune control systems, and they have found wide-
spread use in a variety of industries. Other software packages
such as PIDeasy, AdvaControl Tuner, IMCTune and others can
often produce optimal responses from either online or offline
inputs, and are plug-and-play ready—often with no need
of subsequent controller refinements. Many of the features
of PID tuning software are also designed directly into the
hardware of the controller, most often from the “Big Four” of
control vendors—ABB, Honeywell, Foxboro and Yokogawa.
Because of the number of variables involved in software tun-
ing, it is recommended that it be done on a case-by-case basis.

Limitations of PID Control
Although a PID controller provides an optimum solu-

tion to many processes, it is not a panacea for all control
problems that may be encountered. This is especially true
for processes with ramp-style changes in set-point values or
slow disturbances (Ref. 8). PID controllers can also perform
poorly when the gain values must be greatly reduced in order
to prevent a constant oscillation—or “hunting”—about the
set-point value. Furthermore, PID controllers are linear
and so care must be taken when using them with inher-
ently nonlinear systems—i.e., systems that do not satisfy the
superposition principle or systems with an output that is not
proportional to its input, such as air handling and mixing
applications.

For nonlinear systems, gain scheduling—where utilizing
a family of linear controllers that are independently activated
based upon the values of scheduling variables determines the

K

L T

y

t

1.2Kp

Tu

2Kp

Tu

Kp Tu

8

Figure 4—Reaction curve used for Ziegler-Nichols tuning. (Image

T
L

T
L2

T
L2

T
L

T
L

d2y
dx2 = 0






 powertransmissionengineering april 2011 www.powertransmission.com powertransmissionengineering april 2011 www.powertransmission.com www.powertransmission.com april 2011 powertransmissionengineering 31

basic algebra, and offers results that are acceptable for the
majority of applications. The Ziegler-Nichols method is also
advantageous to use when the state properties of the system
are unknown or in situations when the determination of these
state properties is impossible or impractical.

As mentioned, the Ziegler-Nichols method is not without
its disadvantages. Systems that require a very fast rise time
and/or zero overshoot require a response other than quarter-
wave decay, and as such cannot be tuned with the Ziegler-
Nichols methods. Ultimately, it is imperative that the user
have a clear understanding of the requirements of the system,
and to select the appropriate tuning method as it applies to
their own, unique needs.

References
1. Astrom, K.J. and T.H. Hagglund. “New Tuning Methods
for PID Controllers,” Proceedings from the 3rd European
Control Conference, 1995.
2. Ang, K.H., G.C.Y. Chong and Y. Li. “PID Control System
Analysis, Design and Technology,” IEEE Transactions on
Control Systems Technology 13 (4), 2005, pp. 559–576.
3. Li, Feng et al. “PIDeasy and Automated Generation of
Optimal PID Controllers,” Proceedings from the 3rd Asia-
Pacific Conference of Control and Measurement, Dunhuang,
P.R. China, 1998, pp. 29–33.
4. Co, Tomas B. “Ziegler Nichols Method,” Michigan
Technological University Department of Chemical
Engineering Website, URL: http://www.chem.mtu.edu/~tbco/
cm416/zn.html (cited February 3, 2010).
5. Van Doren, Vance J. “Loop Tuning Fundamentals,”
Control Engineering Website, URL: http://www.controleng.
com/article/268148-Loop_Tuning_Fundamentals.php (cited
February 3, 2010).
6. Zhong, J. “PID Controller Tuning: A Short Tutorial” (class
lesson), Purdue University, 2006.
7. Ibid.
8. Sung, S. W. and In-Beum Lee. “Limitations and
Countermeasures of PID Controllers,” Department of
Chemical Engineering, Pohang University of Science and
Technology, Pohang, Korea, 1996.
9. Ang, K.H., G.C.Y. Chong and Y. Li. “PID Control
System Analysis, Design and Technology,” IEEE
Trans Control Systems Tech, 2005, 13 (4), URL: http://
eprints.gla.ac.uk/3817/1/IEEE3.pdf [cited 2007].

Guillermo “Willie” Costa has been with
L.A.-based Mechanical Drives & Belting
for the past eight years, leading most of the
company’s lean, Six-Sigma and marketing
initiatives. He has designed a number of
the fabrication tools and equipment used
at the company—mostly job-related—in-
cluding cutting templates and tables; he
also ran the company’s returns and repair
operations for two years. He presently attends Cal Poly Pomona,
studying aerospace engineering, and has completed three internships
for NASA and some contract design work of his own. In February
of 2011, Costa left Mechanical Drives & Belting to found Trinity
Aeromotive, an aerospace and power transmission engineering de-
sign and consulting organization.

current operating region of the system—is most often used.
Which scheduling variables are used will depend on the sys-
tem in question. For example, a flight control system on an
aircraft might use altitude and true airspeed as its scheduling
variables, whereas an air handling application might use mass
flow rate and impeller RPM. Nonlinear systems might be
controllable with linear control systems if enough data and a
sufficiently high sampling rate are known. Oftentimes, how-
ever, the use of gain scheduling may be more cost-effective.

Feed-forward control is found in a number of applica-
tions, including perceptron (Ed.’s note: a binary classifier that
maps its input x—a real-valued vector—to an output value f
(x)—a single binary value—across the matrix) and long distance
telephony (L-carrier transmission system of the 1970s). Feed-
forward control can also be used to improve the performance
of a PID controller if certain qualities about the system are
known beforehand and can be fed forward into the PID
controller. This feed-forward value can greatly impact the
performance of the controller; best of all, because feed-
forward input is not affected by the feedback of the system,
the feed-forward value can never cause the control system
to oscillate, thus improving controller response and overall
system stability.

Because the derivative loop is susceptible to process noise,
it is also important to employ low-pass filters, if needed.
However, the use of low-pass filters with derivative control
can result in one filter negating the effect of another. For this
reason, proper instrumentation or the use of a median filter
may be a better option for improving both filter efficiency and
overall performance of the controller (Ref. 9). Additionally,
the differential loop can be turned off completely—Kd = 0—
thereby using the PID controller as a PI controller. Note that
this may require retuning the proportional and integral loops
by utilizing one of the methods discussed in the previous
Loop Tuning section.

Conclusion
PID controllers are a widespread control solution due

to their simple architecture, generally acceptable control
performance and ease of use. Unlike other control options,
PID controllers do not require the user to have an extensive
background in mathematics, control theory or electrical
engineering to understand them. They are found in a wide
variety of applications, and if properly tuned will outperform
almost any other control option. It is in tuning the control-
lers that the greatest gains in performance may be found. A
wide variety of tuning methods exist, although of the three
discussed in this article, the Ziegler-Nichols method provides
the most effective “quick- and-dirty” approach to tuning a
controller. Software tuning has several advantages over the
Ziegler-Nichols method, including the ability to run multiple
iterations of tuning variables through process simulations to
ensure optimum performance before the control logic of the
process is updated. However, this type of tuning requires
knowledge of the system’s state properties and extensive
knowledge of the software in use, with the latter necessitat-
ing acquisition and training costs that the organization might
not be able to justify. In contrast, the Ziegler-Nichols method
requires very little training or specialized knowledge beyond

